The feasibility of internal combustion engine based cogeneration in residential applications. Aussant, Christianne Diane

Masters Abstracts International; 2007; 46, 3; SciTech Premium Collection

THE FEASIBILITY OF INTERNAL COMBUSTION ENGINE **BASED COGENERATION IN RESIDENTIAL APPLICATIONS**

by

Christianne Diane Aussant

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF APPLIED SCIENCE

Major Subject: Mechanical Engineering


at

DALHOUSIE UNIVERSITY

Halifax, Nova Scotia

May, 2007

© Copyright by Christianne Diane Aussant, 2007

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 978-0-494-34843-7 Our file Notre référence ISBN: 978-0-494-34843-7

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

anada

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

DALHOUSIE UNIVERSITY

To comply with the Canadian Privacy Act the National Library of Canada has requested that the following pages be removed from this copy of the thesis:

Preliminary Pages

Examiners Signature Page Dalhousie Library Copyright Agreement

Appendices

Copyright Releases (if applicable)

I would like to dedicate this work to my parents, Mama and Papa. Everything I am and ever will be, I owe to you.

Table of Contents

Lis	st of T	able	six
Lis	st of F	'iguro	esXX
Lis	st of A	bbre	eviations and Symbolsxxiii
Ac	know	ledge	ementsxxix
Ab	stract	t	
1	Intr	oduc	tion1
	1.1	Prol	blems Associated with Conventional Energy Generation and
		Util	ization, and Canada's Response1
	1.2	Cog	generation
	1.3	Tec	hno-Economic and Environmental Analyses5
	1.4	Obj	ectives6
2	Revi	iew o	f Cogeneration Technologies7
	2.1	Con	ventional Methods Used to Heat and Power Residential Spaces7
	2.2	Res	idential Cogeneration7
	2.3	Inte	rnal Combustion Engine (ICE) Based Cogeneration13
3	Revi	iew o	f Analysis Tools Used17
	3.1	Bui	lding Simulation and ESP-r17
	3.2	Feas	sibility and Sensitivity Analyses
4	Met	hodo	logy22
5	Data	abase	e Classification and Test Case House Selection25
	5.1	Data	abase Description25
	5	.1.1	Survey of Household Energy Use Database
	5	.1.2	EnerGuide for Houses Database
	5	.1.3	New Housing Survey Database
	5.2		using Classification
	5.3		t Case House Selection
	5.4	Test	t Case House Characteristics

	5.4.1	Survey of Household Energy Use Database	
	5.4.2	EnerGuide for Houses Database	
	5.4.3	New Housing Survey Database	
	5.5 Tes	t Case House Descriptions	
6	Load Pro	ofile Identification	42
	6.1 Intr	oduction	
	6.2 Met	thodology	43
	6.3 Reg	ional Mapping	47
	6.4 Loa	d Profile Results	
7	Modeling	g in ESP-r	54
	7.1 Tes	t Case House Site and Year of Assessment	54
	7.2 Tes	t Case House Database Description	57
	7.2.1	ESP-r Default Databases	57
	7.2.2	Test Case House Specific Databases	58
	7.3 Zon	e Geometry, Construction and Attribution Modeling	
	7.3.1	Above Grade Zones	59
	7.3.2	Basement Modeling	62
	7.4 Atti	c Modeling	65
	7.5 Wit	ndows	66
	7.5.1	Multi-layer Construction of Triple Pane Windows	
	7.6 Doc	Drs	67
	7.7 Infi	ltration	68
	7.8 Cas	ual Gains	69
	7.9 Pla	nt Modeling	74
	7.9.1	Base Case Plant Model	74
	7.9.2	Cogeneration Plant Model	76
	7.10 Pla	nt Control	81
	7.10.1	Base Case Plant Control	
	7.10.2	Cogeneration Plant Control	

8	Simulati	on and Sensitivity Analysis	
	8.1 Fur	nace Sizing Simulations	84
	8.2 Bas	e Case Simulations	87
	8.3 Cog	generation Simulations	87
	8.3.1	Sensitivity Analysis	87
9	Simulati	on Results and Analysis	90
	9.1 Cos	st Analysis	
	9.1.1	Base Case Fuel Cost	91
	9.1.2	ICE Case Fuel Cost	
	9.1.3	Electricity Cost	95
	9 .1	1.3.1 Flat Rate Electricity Cost Analysis	95
	9.1	1.3.2 Time-of-Use Electricity Cost Analysis	96
	9.2 GH	G Analysis	97
	9.2.1	Base Case GHG Analysis	100
	9.2.2	ICE Case GHG Analysis	103
	9.3 Anr	nual Simulation Results	
	9.3.1	ICE Based Cogeneration System Performance	117
	9.3.2	Fuel Cost Comparison	119
	9.3.3	GHG Emissions Comparison	126
	9.3.4	Backup Burner and Heat Dump	131
	9.4 Reg	gional and National Results	139
	9.5 Dis	cussion	157
10	Conclus	sions and Recommendations	160
	10.1 Co	onclusions	160
	10.2 Re	ecommendations	163
R	eferences		166
Aj	ppendices		173
A	ppendix A:	a Database Details	173
Aj	ppendix B:	Averaging Techniques	

Appendix C: Test Case House Descriptions	197
Appendix D: ESP-r Multi-Layer Construction Database	228
Appendix E: DHW Heat Injector Rate Calculations	232
Appendix F: Flat Rate and Time-of-Use Electricity Pricing	236
Appendix G: Electricity Greenhouse Gas Emissions Data	251
Appendix H: ICE Based Cogeneration Annual Simulation Results	

List of Tables

Table 2.1: Stirling Engine Based Cogeneration Costs
Table 5.1: Classification Results – British Columbia
Table 5.2: Classification Results – Alberta
Table 5.3: Classification Results – Saskatchewan
Table 5.4: Classification Results – Manitoba
Table 5.5: Classification Results – Ontario
Table 5.6: Classification Results – Quebec
Table 5.7: Classification Results – New Brunswick
Table 5.8: Classification Results – Nova Scotia
Table 5.9: Classification Results – Prince Edward Island
Table 5.10: Classification Results – Newfoundland
Table 5.11: NHS Classification Results
Table 5.12: Classification Results for West and Prairie Regions
Table 5.13: Classification Results for Central and Atlantic Regions
-
Table 5.14: Test Case House List
Table 5.14: Test Case House List
Table 5.14: Test Case House List
Table 5.14: Test Case House List
Table 5.14: Test Case House List35Table 5.15: Characteristics from SHEU Database37Table 5.16: Characteristics from EGH Database38Table 5.17: Characteristics from NHS Database39Table 5.18: Test Case House 1 – Specifications40Table 5.19: Test Case House 1 – Window Data41
Table 5.14: Test Case House List35Table 5.15: Characteristics from SHEU Database37Table 5.16: Characteristics from EGH Database38Table 5.17: Characteristics from NHS Database39Table 5.18: Test Case House 1 – Specifications40
Table 5.14: Test Case House List35Table 5.15: Characteristics from SHEU Database37Table 5.16: Characteristics from EGH Database38Table 5.17: Characteristics from NHS Database39Table 5.18: Test Case House 1 – Specifications40Table 5.19: Test Case House 1 – Window Data41
Table 5.14: Test Case House List35Table 5.15: Characteristics from SHEU Database37Table 5.16: Characteristics from EGH Database38Table 5.17: Characteristics from NHS Database39Table 5.18: Test Case House 1 – Specifications40Table 5.19: Test Case House 1 – Window Data41Table 6.1: Best Match Load Profiles44
Table 5.14: Test Case House List35Table 5.15: Characteristics from SHEU Database37Table 5.16: Characteristics from EGH Database38Table 5.17: Characteristics from NHS Database39Table 5.18: Test Case House 1 – Specifications40Table 5.19: Test Case House 1 – Window Data41Table 6.1: Best Match Load Profiles44Table 6.2: Heating Degree-Day – Atlantic Region48
Table 5.14: Test Case House List.35Table 5.15: Characteristics from SHEU Database.37Table 5.16: Characteristics from EGH Database.38Table 5.17: Characteristics from NHS Database.39Table 5.18: Test Case House 1 – Specifications.40Table 5.19: Test Case House 1 – Window Data.41Table 6.1: Best Match Load Profiles.44Table 6.2: Heating Degree-Day – Atlantic Region.48Table 6.3: Heating Degree-Day – Central Region.48
Table 5.14: Test Case House List.35Table 5.15: Characteristics from SHEU Database.37Table 5.16: Characteristics from EGH Database.38Table 5.17: Characteristics from NHS Database.39Table 5.18: Test Case House 1 – Specifications.40Table 5.19: Test Case House 1 – Window Data.41Table 6.1: Best Match Load Profiles.44Table 6.2: Heating Degree-Day – Atlantic Region.48Table 6.3: Heating Degree-Day – Central Region.49
Table 5.14: Test Case House List.35Table 5.15: Characteristics from SHEU Database.37Table 5.16: Characteristics from EGH Database.38Table 5.17: Characteristics from NHS Database.39Table 5.18: Test Case House 1 – Specifications.40Table 5.19: Test Case House 1 – Window Data.41Table 6.1: Best Match Load Profiles.44Table 6.2: Heating Degree-Day – Atlantic Region.48Table 6.3: Heating Degree-Day – Central Region.48Table 6.4: Heating Degree-Day – Western Region.49Table 6.5: Heating Degree-Day – Western Region.49

Table 7.1: ESP-r Weather File Availability
Table 7.2: Simulation Cities
Table 7.3: Test Case House Dimensions
Table 7.4: Soil Properties
Table 7.5: Window Sizes
Table 7.6: Door RSI Values
Table 7.7: Flue Diameters
Table 7.8: Sensible and Latent Gains by Activity70
Table 7.9: Weekday Activity Schedule – First Occupant
Table 7.10: Weekend Activity Schedule – First Occupant
Table 7.11: Weekday Activity Schedule – Remaining Occupants
Table 7.12: Weekend Activity Schedule – Remaining Occupants
Table 7.13: Weekday Sensible and Latent Gains – Two Occupants
Table 7.14: Weekend Sensible and Latent Gains – Two Occupants
Table 7.15: Weekday Sensible and Latent Gains – Three Occupants
Table 7.16: Weekend Sensible and Latent Gains – Three Occupants
Table 7.17: Weekday Sensible and Latent Gains – Four Occupants
Table 7.18: Weekend Sensible and Latent Gains – Four Occupants
Table 8.1: Test Case House Furnace Capacity
Table 8.2: Sensitivity Analysis Scenarios
Table 9.1: Base Case Annual Simulation Results – Test Case House 10, Le Pas90
Table 9.2: Base Case Constants – Test Case House 10, Le Pas
Table 9.3: ICE Case Annual Simulation Results – Test Case House 10, Le Pas,2 kW, 300 Litres
Table 9.4: Fuel Heating Values
Table 9.5: Natural Gas Prices93
Table 9.6: Heating Oil Prices94
Table 9.7: Propane Prices
Table 9.8: Average Electricity Emissions Factors by Province
Table 9.9: High intensity Electricity Emissions Factors by Province and Transmission

and Distribution Losses	.99
Table 9.10: Fuel Emissions Factors	02
Table 9.11: Fuel Price Differences	23
Table 9.12: Test Case House SHEU Weighing Factors	41
Table 9.13: Simulation City Population1	.42
Table 9.14: City Specific Weighing Factors14	43
Table 9.15: GHG Reductions using Average Electricity Emissions Factor – Prairie Region	46
Table 9.16: GHG Reductions using Average Electricity Emissions Factor – Atlantic Region	47
Table 9.17: Minimum Cost Increase using Average Electricity Emissions Factor – Prairie Region	48
Table 9.18: GHG Reductions using High intensity Electricity Emissions Factor – Prairie Region1	50
Table 9.19: GHG Reductions using High intensity Electricity Emissions Factor – Central Region1	51
Table 9.20: GHG Reductions using High intensity Electricity Emissions Factor – Atlantic Region	52
Table 9.21: Minimum Cost Increase using High intensity Electricity Emissions Factor – Prairie Region	53
Table 9.22: Regional and National GHG Reductions and Associated Increase in Fuel Cost	54
Table 9.23: Increased Fuel Cost per Tonne of GHG Reduction – Canada	55
Table 9.24: Representation of Single Detached Homes by Test Case Houses	56
Table 9.25: Total Residential GHG Emissions – by Region	56
Table 9.26: Potential Percentage of Residential GHG Emissions Reduction1	57
Table A.1: Data available in SHEU	73
Table A.2: Data available in EGH18	85
Table A.3: Data available in NHS	90
Table B.1: Sample Data Set for Averaging Example	94
Table B.2: Example Data Set for Indicator Variable Example	95
Table B.3: Example Data Set for Indicator Variable Example	96

Table C.1: Test Case House 1 – Specifications
Table C.2: Test Case House 1 – Window Data
Table C.3: Test Case House 2 – Specifications and Window Data
Table C.4: Test Case House 3 – Specifications and Window Data
Table C.5: Test Case House 4 – Specifications and Window Data
Table C.6: Test Case House 5 – Specifications and Window Data
Table C.7: Test Case House 6 – Specifications and Window Data
Table C.8: Test Case House 7 – Specifications and Window Data
Table C.9: Test Case House 8 – Specifications and Window Data
Table C.10: Test Case House 9 – Specifications and Window Data
Table C.11: Test Case House 10 – Specifications and Window Data207
Table C.12: Test Case House 11 – Specifications and Window Data208
Table C.13: Test Case House 12 – Specifications and Window Data
Table C.14: Test Case House 13 – Specifications and Window Data210
Table C.15: Test Case House 4 – Specifications and Window Data
Table C.16: Test Case House 15 – Specifications and Window Data
Table C.17: Test Case House 16 – Specifications and Window Data213
Table C.18: Test Case House 17 – Specifications and Window Data214
Table C.19: Test Case House 18 – Specifications and Window Data215
Table C.20: Test Case House 19 – Specifications and Window Data
Table C.21: Test Case House 20 – Specifications and Window Data217
Table C.22: Test Case House 21 – Specifications and Window Data
Table C.23: Test Case House 22 – Specifications and Window Data
Table C.24: Test Case House 23 – Specifications and Window Data
Table C.25: Test Case House 24 – Specifications and Window Data
Table C.26: Test Case House 25 – Specifications and Window Data
Table C.27: Test Case House 26 – Specifications and Window Data
Table C.28: Test Case House 27 – Specifications and Window Data
Table C.29: Test Case House 28 – Specifications and Window Data

Table C.30: Test Case House 29 – Specifications and Window Data	226
Table C.31: Test Case House 30 – Specifications and Window Data	227
Table E.1: DHW Data	
Table E.2: DHW Data – Natural Gas	233
Table E.3: Heat Injector Rate – Natural Gas	234
Table E.4: DHW Data – Oil	234
Table E.5: DHW Data – Electricity	234
Table E.6: Heat Injector Rate – Electricity	235
Table F.1: Ontario Flat Rate Price	237
Table F.2: Manitoba - Annual and Monthly Electricity Consumption	238
Table F.3: Flat Rate Prices for Manitoba Test Case Houses	239
Table F.4: Quebec – Annual and Daily Electricity Consumption	239
Table F.5: New Brunswick – Annual and Monthly Electricity Consumption	240
Table F.6: Prince Edward Island – Annual and Monthly Electricity Consumption	241
Table F.7: Flat Rate Electricity Prices by Province	242
Table F.8: Ontario TOU Pricing – Winter Weekdays	243
Table F.9: Ontario TOU Pricing – Summer Weekdays	243
Table F.10: Ontario TOU Pricing – All Weekends	243
Table F.11: British Columbia TOU Pricing – Winter Weekdays	244
Table F.12: British Columbia TOU Pricing – Summer Weekdays	244
Table F.13: British Columbia TOU Pricing – All Weekends	244
Table F.14: Alberta TOU Pricing – Winter Weekdays	
Table F.15: Alberta TOU Pricing – Summer Weekdays	245
Table F.16: Alberta TOU Pricing – All Weekends	245
Table F.17: Saskatchewan TOU Pricing – Winter Weekdays	245
Table F.18: Saskatchewan TOU Pricing – Summer Weekdays	246
Table F.19: Saskatchewan TOU Pricing – All Weekends	246
Table F.20: Manitoba TOU Pricing – Winter Weekdays	246
Table F.21: Manitoba TOU Pricing – Summer Weekdays	

Table F.22: Manitoba TOU Pricing – All Weekends
Table F.23: Quebec TOU Pricing – Winter Weekdays
Table F.24: Quebec TOU Pricing – Summer Weekdays
Table F.25: Quebec TOU Pricing – All Weekends
Table F.26: New Brunswick TOU Pricing – Winter Weekdays
Table F.27: New Brunswick TOU Pricing – Summer Weekdays
Table F.28: New Brunswick TOU Pricing – All Weekends
Table F.29: Prince Edward Island TOU Pricing – Winter Weekdays
Table F.30: Prince Edward Island TOU Pricing – Summer Weekdays
Table F.31: Prince Edward Island TOU Pricing – All Weekends
Table F.32: Newfoundland TOU Pricing – Winter Weekdays
Table F.33: Newfoundland TOU Pricing – Summer Weekdays
Table F.34: Newfoundland TOU Pricing – All Weekends
Table F.35: Nova Scotia TOU Pricing – Winter (Dec. – Feb.) Weekdays
Table F.36: Nova Scotia TOU Pricing – Non-Winter (Mar. – Nov) Weekdays250
Table F.37: Nova Scotia TOU Pricing – All Weekends
Table G.1: British Columbia - GHG Emissions (kt CO2eq)
Table G.2: British Columbia – Electricity Generation (GWh)
Table G.3: British Columbia – GHG Intensity (gCO2eq/kWh)
Table G.4: Alberta - GHG Emissions (kt CO2eq)
Table G.5: Alberta – Electricity Generation (GWh)
Table G.6: Alberta – GHG Intensity (gCO2eq/kWh)
Table G.7: Saskatchewan - GHG Emissions (kt CO2eq)
Table G.8: Saskatchewan – Electricity Generation (GWh)
Table G.9: Saskatchewan – GHG Intensity (gCO2eq/kWh)
Table G.10: Manitoba - GHG Emissions (kt CO2eq)
Table G.11: Manitoba – Electricity Generation (GWh)
Table G.12: Manitoba – GHG Intensity (gCO2eq/kWh)
Table G.13: Ontario - GHG Emissions (kt CO2eq)

Table G.14: Ontario – Electricity Generation (GWh)
Table G.15: Ontario – GHG Intensity (gCO ₂ eq/kWh)258
Table G.16: Quebec - GHG Emissions (kt CO2eq)
Table G.17: Quebec – Electricity Generation (GWh)
Table G.18: Quebec – GHG Intensity (gCO ₂ eq/kWh)260
Table G.19: New Brunswick - GHG Emissions (kt CO ₂ eq)260
Table G.20: New Brunswick – Electricity Generation (GWh)
Table G.21: New Brunswick – GHG Intensity (gCO ₂ eq/kWh)261
Table G.22: Nova Scotia – GHG Emissions (kt CO ₂ eq)262
Table G.23: Nova Scotia – Electricity Generation (GWh)
Table G.24: Nova Scotia – GHG Intensity (gCO ₂ eq/kWh)263
Table G.25: Prince Edward Island – GHG Emissions (kt CO ₂ eq)263
Table G.26: Prince Edward Island – Electricity Generation (GWh)
Table G.27: Prince Edward Island – GHG Intensity (gCO ₂ eq/kWh)264
Table G.28: Newfoundland – GHG Emissions (kt CO ₂ eq)265
Table G.29: Newfoundland – Electricity Generation (GWh)
Table G.30: Newfoundland – GHG Intensity (gCO ₂ eq/kWh)266
Table H.1: Annual Base Case Simulation Results – British Columbia
Table H.2: Annual Base Case Simulation Results – Alberta
Table H.3: Annual Base Case Simulation Results – Saskatchewan
Table H.4: Annual Base Case Simulation Results – Manitoba
Table H.5: Annual Base Case Simulation Results – Ontario
Table H.6: Annual Base Case Simulation Results – Quebec
Table H.7: Annual Base Case Simulation Results – New Brunswick
Table H.8: Annual Base Case Simulation Results – Nova Scotia
Table H.9: Annual Base Case Simulation Results – Prince Edward Island
Table H.10: Annual Base Case Simulation Results – Newfoundland
Table H.11: Summary of Annual ICE Based Cogeneration Simulation Results – British Columbia
Table 11.12. Communication of Amount ICE Deced Concernantian Simulation Decults

 Table H.12: Summary of Annual ICE Based Cogeneration Simulation Results

– Alberta	279
Table H.13: Summary of Annual ICE Based Cogeneration Simulation Results – Saskatchewan	280
Table H.14: Summary of Annual ICE Based Cogeneration Simulation Results – Manitoba	
Table H.15: Summary of Annual ICE Based Cogeneration Simulation Results – Ontario.	
Table H.16: Summary of Annual ICE Based Cogeneration Simulation Results – Quebec	281
Table H.17: Summary of Annual ICE Based Cogeneration Simulation Results – New Brunswick.	
Table H.18: Summary of Annual ICE Based Cogeneration Simulation Results – Nova Scotia	
Table H.19: Summary of Annual ICE Based Cogeneration Simulation Results – Prince Edward Island	
Table H.20: Summary of Annual ICE Based Cogeneration Simulation Results – Newfoundland	
Table H.21: Summary of Annual ICE Base Cogeneration Simulation Results– Prince George, 3.0 kW ICE, 1000 kg Thermal Storage	284
Table H.22: Test Case House 1, Prince George – ICE Based Cogeneration Ann Simulation Results	
Table H.23: Test Case House 1, Vancouver – ICE Based Cogeneration Annual Simulation Results	
Table H.24: Test Case House 2, Prince George – ICE Based Cogeneration Ann Simulation Results	
Table H.25: Test Case House 2, Vancouver – ICE Based Cogeneration Annual Simulation Results	
Table H.26: Test Case House 3, Prince George – ICE Based Cogeneration Ann Simulation Results	
Table H.27: Test Case House 3, Vancouver – ICE Based Cogeneration Annual Simulation Results	
Table H.28: Test Case House 4, Calgary – ICE Based Cogeneration Annual Simulation Results	291
Table H.29: Test Case House 4, Edmonton – ICE Based Cogeneration Annual Simulation Results	292
Table H.30: Test Case House 5, Calgary – ICE Based Cogeneration Annual	

Simulation Results	293
Table H.31: Test Case House 5, Edmonton – ICE Based Cogeneration Annual Simulation Results.	294
Table H.32: Test Case House 6, Calgary – ICE Based Cogeneration Annual Simulation Results.	295
Table H.33: Test Case House 6, Edmonton – ICE Based Cogeneration Annual Simulation Results.	296
Table H.34: Test Case House 7, North Battleford – ICE Based Cogeneration Annual Simulation Results	
Table H.35: Test Case House 7, Regina – ICE Based Cogeneration Annual Simulation Results.	298
Table H.36: Test Case House 8, North Battleford – ICE Based Cogeneration Annual Simulation Results	299
Table H.37: Test Case House 8, Regina – ICE Based Cogeneration Annual Simulation Results.	300
Table H.38: Test Case House 9, North Battleford – ICE Based Cogeneration Annual Simulation Results	301
Table H.39: Test Case House 9, Regina – ICE Based Cogeneration Annual Simulation Results	302
Table H.40: Test Case House 10, Le Pas – ICE Based Cogeneration Annual Simulation Results	303
Table H.41: Test Case House 10, Winnipeg – ICE Based Cogeneration Annual Simulation Results.	304
Table H.42: Test Case House 11, Le Pas – ICE Based Cogeneration Annual Simulation Results	305
Table H.43: Test Case House 11, Winnipeg – ICE Based Cogeneration Annual Simulation Results	306
Table H.44: Test Case House 12, Le Pas – ICE Based Cogeneration Annual Simulation Results	307
Table H.45: Test Case House 12, Winnipeg – ICE Based Cogeneration Annual Simulation Results	308
Table H.46: Test Case House 13, Ottawa – ICE Based Cogeneration Annual Simulation Results	309
Table H.47: Test Case House 13, Toronto – ICE Based Cogeneration Annual Simulation Results	310
Table H.48: Test Case House 14, Ottawa – ICE Based Cogeneration Annual	

Simulation H	Results	311
	House 14, Toronto – ICE Based Cogeneration Annual Results	312
	House 15, Ottawa – ICE Based Cogeneration Annual Results	313
	House 15, Toronto – ICE Based Cogeneration Annual Results	314
	House 16, Montreal – ICE Based Cogeneration Annual Results	315
	House 16, Quebec – ICE Based Cogeneration Annual Results	316
	House 17, Montreal – ICE Based Cogeneration Annual Results	317
	House 17, Quebec – ICE Based Cogeneration Annual Results	318
	House 18, Montreal – ICE Based Cogeneration Annual Results	319
	House 18, Quebec – ICE Based Cogeneration Annual Results	320
	House 19, Fredericton – ICE Based Cogeneration Annual Results	321
	House 19, Saint John – ICE Based Cogeneration Annual Results	322
	House 20, Fredericton – ICE Based Cogeneration Annual ults	323
	House 20, Saint John – ICE Based Cogeneration Annual Results	324
	House 21, Fredericton – ICE Based Cogeneration Annual Results	325
	House 21, Saint John – ICE Based Cogeneration Annual Results	326
	House 22, Halifax – ICE Based Cogeneration Annual Results	327
	House 22, Sydney – ICE Based Cogeneration Annual Results	328
Table H.66: Test Case I	House 23, Halifax – ICE Based Cogeneration Annual	

Simulation Results	329
Table H.67: Test Case House 23, Sydney – ICE Based Cogeneration Annual Simulation Results	330
Table H.68: Test Case House 24, Halifax – ICE Based Cogeneration Annual Simulation Results	331
Table H.69: Test Case House 24, Sydney – ICE Based Cogeneration Annual Simulation Results	332
Table H.70: Test Case House 25, Prince Edward Island – ICE Based Cogeneration Annual Simulation Results	333
Table H.71: Test Case House 26, Prince Edward Island – ICE Based Cogeneration Annual Simulation Results	334
Table H.72: Test Case House 27, Prince Edward Island – ICE Based Cogeneration Annual Simulation Results	335
Table H.73: Test Case House 28, Goose Bay – ICE Based Cogeneration Annual Simulation Results.	336
Table H.74: Test Case House 28, St. John's – ICE Based Cogeneration Annual Simulation Results	337
Table H.75: Test Case House 29, Goose Bay – ICE Based Cogeneration Annual Simulation Results	338
Table H.76: Test Case House 29, St. John's – ICE Based Cogeneration Annual Simulation Results	339
Table H.77: Test Case House 30, Goose Bay – ICE Based Cogeneration Annual Simulation Results	340
Table H.78: Test Case House 30, St. John's – ICE Based Cogeneration Annual Simulation Results	341
Table H.79: Annual Simulation Results – Prince George, 3.0 kW, 1000 kg Thermal Storage	342

List of Figures

Figure 1.1: Energy Use by Sector, 1990 and 20032	
Figure 1.2: Cogeneration vs. Conventional Generation4	•
Figure 2.1: Typical Packaged Internal Combustion Engine Based (spark ignited) Cogeneration System	5
Figure 2.2: ESP-r: Project Manger versus Technical Domains)
Figure 4.1: Methodology Flow Chart	
Figure 5.1: Classification Scheme	}
Figure 6.1: Average Daily Electricity Load Profile	
Figure 7.1: Typical ESP-r House Model)
Figure 7.2: Test Case House Attribution	•
Figure 7.3: Test Case House Basement Configuration	2
Figure 7.4: Attic Zone	5
Figure 7.5: Base Case Plant Configuration	5
Figure 7.6: ICE Based Cogeneration Case Plant Configuration	5
Figure 7.7: Performance Curve of 6 kW Cummins Gas Engine, SFC versus Part Load Ratio72	7
Figure 7.8: Performance Curve of 6 kW Cummins Gas Engine, Electrical Efficiency versus Part Load Ratio	3
Figure 7.9: Performance Curve of 6 kW Cummins Gas Engine, Heat to Power Ratio versus Part Load Ratio	3
Figure 7.10: DHW Draw Profile80)
Figure 7.11: Base and Cogeneration Case – Zone Temperatures	3
Figure 8.1: Electricity Demand Frequency Plot	1
Figure 9.1: Base Case Fuel Costs – British Columbia107	7
Figure 9.2: Base Case GHG Emissions – British Columbia107	7
Figure 9.3: Base Case Fuel Costs – Alberta	;
Figure 9.4: Base Case GHG Emissions – Alberta108	}
Figure 9.5: Base Case Fuel Costs – Saskatchewan109)
Figure 9.6: Base Case GHG Emissions – Saskatchewan109)
Figure 9.7: Base Case Fuel Costs – Manitoba110)

Figure 9.8: Base Case GHG Emissions – Manitoba110
Figure 9.9: Base Case Fuel Costs – Ontario
Figure 9.10: Base Case GHG Emissions – Ontario111
Figure 9.11: Base Case Fuel Costs – Quebec
Figure 9.12: Base Case GHG Emissions – Quebec112
Figure 9.13: Base Case Fuel Costs – New Brunswick113
Figure 9.14: Base Case GHG Emissions – New Brunswick113
Figure 9.15: Base Case Fuel Costs – Nova Scotia114
Figure 9.16: Base Case GHG Emissions – Nova Scotia114
Figure 9.17: Base Case Fuel Costs – Prince Edward Island115
Figure 9.18: Base Case GHG Emissions – Prince Edward Island115
Figure 9.19: Base Case Fuel Costs – Newfoundland116
Figure 9.20: Base Case GHG Emissions – Newfoundland116
Figure 9.21: Total Thermal Demand vs. CHP Efficiency117
Figure 9.22: Demand _{el} / Demand _{SH} vs. CHP Efficiency118
Figure 9.23: ICE Based Cogeneration Case – Comparative Fuel Costs120
Figure 9.24: Total Fuel Cost Increase – Saskatchewan and Quebec122
Figure 9.25: Fuel Cost Difference vs. Delta Cost124
Figure 9.26: Total Fuel Increase vs. Fuel Price125
Figure 9.27: Electricity Emissions Factor vs. Comparative GHG Emissions – 1.0 kW ICE System
Figure 9.28: Electricity Emissions Factor vs. Comparative GHG Emissions – 2.0 kW ICE System
Figure 9.29: Comparative GHG Emissions using Average Electricity Emissions Factor – by Province
Figure 9.30: Comparative GHG Emissions using High Electricity Emissions Factor – by Province
Figure 9.31: Space Heating Demand vs. Backup Burner Output
Figure 9.32: Total Thermal Demand vs. Backup Burner Output133
Figure 9.33: Demand _{el} / Demand _{SH} vs. Backup Burner Output134
Figure 9.34: Space Heating Demand vs. Heat Dump135

Figure 9.35: Domestic Hot Water Demand vs. Heat Dump	136
Figure 9.36: Total Thermal Demand vs. Heat Dump	136
Figure 9.37: Demand _{el} / Demand _{SH} vs. Heat Dump	137
Figure 9.38: Heat Dump vs. Increase in Fuel Cost	138
Figure E.1: Normalized Tank Size vs. Average kW Input – Natural Gas	233
Figure E.2: Normalized Tank Size vs. Average kW Input – Electricity	235
Figure F.1 Time-of-use Pricing in Ontario	236
Figure H.1: Le Pas and Sydney HDD	344

List of Abbreviations and Symbols

Abbreviations

A/C	Air Conditioning
AB	Alberta
ACH	Air Change per Hour
AIM-2	Alberta Infiltration Model
ALC	Appliance, Lighting and Cooling
ASCII	American Standard Code for Information Interchange
BC	British Columbia
CCHT	Canadian Centre for Housing Technology
CDA	Conditional Demand Analysis
CHP	Combined Heat and Power
CSA	Canadian Standards Association
DHW	Domestic Hot Water
EGH	EnerGuide for Houses
ESP-r	Environmental Systems Performance – research
ESRU	Energy Simulation Research Unit
FCHU	Fuel Cell Heating Unit
GHG	Greenhouse Gas
GWP	Global Warming Potential
HDD	Heating Degree Day
HHV	Higher Heating Value
HVAC	Heating, Ventilation and Air Conditioning
ICE	Internal Combustion Engine
IEA	International Energy Agency
LHV	Lower Heating Value
LPG	Liquefied Petroleum Gas
MB	Manitoba

MLC	Multi-Layer Construction
NB	New Brunswick
NF	Newfoundland
NG	Natural Gas
NHS	New Housing Survey
NN	Neural Network
NRCan	Natural Resources Canada
NS	Nova Scotia
ON	Ontario
PEI	Prince Edward Island
PEM	Proton Exchange Membrane
PEM PQ	Proton Exchange Membrane Quebec
PQ	Quebec
PQ RSI	Quebec R-value Système International
PQ RSI SFC	Quebec R-value Système International Specific Fuel Consumption
PQ RSI SFC SHEU	Quebec R-value Système International Specific Fuel Consumption Survey of Household Energy Use
PQ RSI SFC SHEU SI	Quebec R-value Système International Specific Fuel Consumption Survey of Household Energy Use Spark Ignition
PQ RSI SFC SHEU SI SK	Quebec R-value Système International Specific Fuel Consumption Survey of Household Energy Use Spark Ignition Saskatchewan

Symbols

$\bar{\eta}$	average efficiency
\bar{A}	Average house area (ft^2)
%surface _i	percentage of heat loss through surface i
(S:L) ₁	sensible to latent ratio for first occupant
(S:L) _r	sensible to latent ratio for remaining occupants
Α	area of house as defined by SHEU (ft ²)
BBoutput	annual back-up burner output (MJ/yr)

xxiv

capacity _{ss}	steady-state furnace capacity (W)
cost _{BC}	total fuel cost in base case simulation (CAD/yr)
Cost _{el,flat}	annual cost of electricity using a flat rate electricity price (CAD/yr)
Cost _{el,TOU}	annual cost of electricity using TOU pricing (CAD/yr)
Cost _{i,C1}	fuel cost for test case house i simulated in city 1 (CAD/yr)
Cost _{i,C1,BC}	base case fuel cost for test case house i simulated in city 1 (CAD/yr)
Cost _{i,C2}	fuel cost for test case house i simulated in city 2 (CAD/yr)
Cost _{i,C2,BC}	base case fuel cost for test case house i simulated in city 2 (CAD/yr)
Cost _{i,MIN}	minimum increase in fuel cost for test case house i (CAD/yr)
cost _{ICE}	total fuel cost in ICE based cogeneration simulation (CAD/yr)
Cost _{NG}	annual cost of natural gas (CAD/yr)
Demand _{DHW}	DHW demand ((GJ/yr)
Demandel	annual electricity demand of test case house (kWh/yr)
Demand _{el,grid}	grid-imported electricity in ICE based cogeneration simulations
	(kWh/yr)
Demand _{SH}	estimated space heating demand (GJ/yr)
Energy _{th}	annual thermal energy requirement of test case house (GJ/yr)
Ε	electricity demand
$\mathrm{EF}_{\mathrm{el},\mathrm{avg}}$	Average GHG emissions factor for electricity (gCO2eq/kWh)
$\mathrm{EF}_{\mathrm{el,hi}}$	high intensity electricity emissions factor (gCO2eq/kWh)
EF _F	GHG emissions factor for fuel (gCO ₂ eq/m ³)
$\mathbf{EG}_{\mathbf{ff}}$	total electricity generation from fossil fuel fired power plants (kWh)
fan _i	fan power at time step i
fuel _{DHW}	annual DHW energy requirement (GJ/yr)
fuel _{SH}	annual space heating fuel requirement (GJ/yr)
GHG _{BC}	total GHG emissions in base case simulation (tonnes/yr)
GHG _{el,avg}	annual GHG emissions due to electricity using average emissions
	factor (tonnes/yr)
GHG _{el,hi}	annual GHG emissions due to electricity using the high intensity

	• •	C .	/. / \
alaatriaitu	00010000	tootor	(tonnes/yr)
	ETHINNICHIN	TACIO	

	electricity emissions factor (tonnes/yr)
$\mathrm{GHG}_{\mathrm{ff}}$	total GHG emissions from fossil fuel fired power plants (gCO2eq)
GHG _{i,C1}	GHG emissions for test case house i simulated in city 1 (tonnes/yr)
GHG _{i,C1,BC}	base case GHG emissions for test case house i simulated in city 1
	(tonnes /yr)
GHG _{i,C2}	GHG emissions for test case house i simulated in city 2 (tonnes/yr)
GHG _{i,C2,BC}	base case GHG emissions for test case house i simulated in city 2
	(tonnes /yr)
GHG _{i,MAX}	maximum GHG reduction for test case house i (tonnes/yr)
GHG _{ICE}	total GHG emissions in ICE based cogeneration simulation
	(tonnes/yr)
GHG _{th}	annual fuel GHG emissions (tonnes/yr)
GHG _{tot,avg}	total annual GHG emissions using average electricity emissions
	factor (tonnes/yr)
$GHG_{tot,hi}$	total annual GHG emissions using high intensity electricity
	emissions factor (tonnes/yr)
H _{Attic}	attic height (m)
Heave	height of building eaves (m)
HHV_{v}	higher heating value of fuel per unit volume (MJ/m ³)
hI	number of kWh in first price tier
h _{II}	number of kWh in second price tier
h _{TOTAL}	total number of kWh
i	time-step, test case house number
ICE _F	annual ICE fuel consumption (kg/yr)
ICE _{Output,el}	ICE electrical output (kWh/yr)
ICE _{Output,th}	ICE thermal output (GJ/yr)
L	length of house (ft or m)
Lf _i	furnace part load ratio at time step i
LHV _m	lower heating value of fuel per unit mass (MJ/kg)

LHV _v	lower heating value of fuel per unit volume (MJ/m ³)
Losses	transmission and distribution losses (kWh)
MET ₁	metabolic rate of first occupant (W/m ²)
MET _r	metabolic rate of remaining occupants (W/m ²)
n	number of occupants
NG _{tot}	annual total natural gas consumption (m ³ /yr)
NN	neural network estimate of annual electricity consumption
O _F	Ontario flat rate electricity price (¢/kWh)
O _{TOU}	Ontario time-of-use electricity price (¢/kWh)
P ₁	population of simulation city 1
P ₂	population of simulation city 2
Pel,flat	flat rate price of electricity (¢/kWh)
P _{el,TOU}	cost of electricity according to TOU pricing at time-step i (¢/kWh)
P _F	flat rate electricity price (¢/kWh)
P _F	provincial flat rate electricity price (¢/kWh)
PI	flat rate electricity price for first tier (¢/kWh)
P _{II}	flat rate electricity price for second tier (¢/kWh)
P _{NG}	price of natural gas (ϕ/m^3)
P _{TOU}	Provincial time-of-use electricity price (¢/kWh)
Q	thermal demand
SA _i	surface area of surface i (m^2)
SA _{Total}	total surface area of basement (m ²)
Storeys	the number of storeys excluding the basement
W	width of house (ft or m)
$\mathbf{W}_{\text{daily}}$	daily water draw (litres)
WF_1	weighing factor for simulation city 1
WF ₂	weighing factor for simulation city 2
WF _{i,C1}	weighing factor for simulation city 1, test case house i
WF _{i,C2}	$WF_{i,C2}$ = weighing factor for simulation city 2, test case house i

xxviii

WF _{SHEU}	SHEU weighing factor
$\mathbf{X}_{\mathbf{i}}$	data
X _{iAB}	absolute data point
X _{iN}	normalized data point
X_W	weighted average
$\alpha_{\rm E}$	part of the energy transformed into electricity in a cogeneration unit
	(%)
α_Q	part of the energy transformed into usable heat in a cogeneration
	unit (%)
Δcost	change in fuel cost relative to base case cost (%)
∆GHG	change in GHG emissions relative to base case GHG emissions (%)
ηснр	ICE based cogeneration CHP efficiency (%)
$\eta_{\rm E}$	electrical yield of an electrical power plant (production of electricity
	only)
η _{el}	ICE electriclal efficiency (%)
η_Q	yield of a boiler (production of heat only)

Acknowledgements

I would like to sincerely thank my supervisor, Dr. Alan Fung for his encouragement, patience and understanding over the course of this project. I would also like to thank my co-supervisor, Dr. V. Ismet Ugursal for his invaluable advice in editing this manuscript. I have learned a great deal and will be a better writer because of this. In addition, I am grateful to Dr. Ben Abdallah and Dr. Beausoleil-Morrison for taking the time to review this manuscript.

I am deeply indebted to Mr. Alex Ferguson, Ms. Maria Mottillo, and Mr. Hajo Ribberink at Natural Resources Canada, Sustainable Buildings and Communities. The care and patience with which they offered support in learning and using ESP-r helped me more than they will ever know.

I would like to thank Natural Resources Canada, the Natural Sciences and Research Council of Canada for providing funding for this work through Dr. Fung's Discovery grant. I would also like to thank Dalhousie University for providing financial support for this work through scholarships and teaching assistantships.

Finally, I would like to thank my friends and family for their unwavering support over all of these years. To my dear friend and colleague, Ali Syed, thank you for keeping me grounded and for always making me laugh. To my friends, Jenn, Tiffany, Ashlee, and Joel – thank you for always supporting, and more importantly, understanding me. To my brother, Colin, you have always helped me remember why I am doing this, thank you. To my sister Chantal, thank you for always being available to me, for listening to me and for pushing me to keep going. To my mom, Mama, your daily encouragement and solid belief in me have given me the confidence to get to this point. Many times you believed in me more than I did, and I know without a doubt, that you gave me the strength to see this work through to completion, thank you. To my dad, Papa, thank you for instilling in me a curiosity that drives me to seek understanding and thank you for teaching me how to approach problems that, at first glance, seem insolvable – your example has, and will continue to make me a better engineer.

Abstract

The objectives of this work are to model a group of test case houses using a highresolution building simulation program, to evaluate the efficiency of internal combustion engine (ICE) based cogeneration and to determine the economical (in terms of fuel cost) and environmental impacts of using ICE based cogeneration systems for residential use.

Fifty-seven independent houses models were created using the high-resolution building simulation software, ESP-r and were simulated using conventional space and domestic hot water heating equipment. The results of these base case simulations were used as the basis of comparison for the ICE based cogeneration simulations. A sensitivity analysis was performed on the ICE based cogeneration model, simulating a 1.0 kW and 2.0 kW ICE system with a 300 litre and 450 litre tank in all of the test case house models.

The performance in terms of electrical and CHP efficiencies of the ICE based cogeneration systems in Canada were investigated and it was determined that the performance of the ICE based cogeneration system is dependent on the thermal and electrical loads of the house, on climate, especially the severity and duration of the heating season, and on the constructional characteristics of the house.

The economic viability in terms of fuel costs of the ICE based cogeneration system was investigated using both flat rate and time-of-use electricity pricing. It was determined that the economic viability of the ICE based residential cogeneration is dependent on the provincial fuel and electricity prices. In provinces with relatively low fuel prices and relatively high electricity prices (e.g. Saskatchewan) using the 1.0 kW ICE based cogeneration system resulted in an increase (< 15%) in fuel costs in all of the test case houses. In provinces with relatively high fuel prices (e.g. Quebec), the fuel cost using the ICE based cogeneration system was considerably higher (>90%) compared to the base case.

The potential reduction of GHG emissions using the ICE based cogeneration system was investigated. A GHG emissions analysis was performed on each of the test case house models for the base case scenario and the cogeneration cases. The total GHG emissions for each of the cogeneration system configurations were calculated and compared the emissions profile for the base case scenario. It was determined that the GHG reduction potential was dependent on the provincial electricity emissions factor. In provinces where the electricity generation mix is such that the emissions factor is high, (>750 gCO₂eq/kWh), using the ICE based cogeneration system resulted in a reduction of GHGs.

The annual simulation results were extrapolated to comment on the GHG reductions and associated increase in fuel costs at a regional and national level using ICE based cogeneration. At a national level, there is a potential for between 1900 kt – 5200 kt of GHG reductions using ICE based cogeneration in residential applications costing between 420 CAD to 515 CAD in increased fuel costs per tonne of GHG reductions.

Chapter 1 Introduction

Due to rising fuel costs, decreasing fossil fuel stocks, increasing atmospheric carbon dioxide levels and Canada's commitment under the Kyoto Protocol, there is a need for measures to be taken to increase energy efficiency and decrease emissions production. Cogeneration, or the simultaneous production of electricity and useful heat using one fuel stream, offers a way of increasing fuel efficiency while decreasing emissions when compared to conventional electrical and thermal energy generation.

Residential cogeneration is an attractive option for increasing energy efficiency and decreasing greenhouse gas (GHG) emissions as residential cogeneration systems can achieve energy conversion efficiencies of up to 80% (based on HHV) as compared to 30-35% (HHV) efficiency obtained through conventional fossil fuel based electricity production and up to 55% (HHV) for combined cycle plants, such as combined cycle gas turbine. Higher efficiency translates into reduced GHG emissions and reduced fuel costs. Moreover, there are several technologies suitable for residential cogeneration currently available or under development including reciprocating internal combustion engine, micro-turbine, fuel cell, and reciprocating external Stirling engine based cogeneration systems.

1.1 Problems Associated with Conventional Energy Generation and Utilization, and Canada's Response

According to the International Energy Outlook 2006 published by the US Department of Energy, world energy demand is expected to increase by 71% between 2003 and 2030 (Energy Information Administration, 2006). In addition, all forecasts of future world energy supply (POLES, IEA, World Bank, etc.) anticipate an almost doubling of world primary energy supply between 2000 and 2020 (Pilavachi, 2002). Carbon dioxide (CO_2) emissions are expected to increase by at least the same amount as the reduced emissions

achieved by using advanced technologies in developed countries will be offset by an increase in fossil fuel use for transportation and by the use of low efficiency technologies in developing countries (Pilavachi, 2002). Current world energy demand is met primarily by fossil fuels – oil with 39% of the total share, natural gas at 23%, coal at 24%, nuclear at 7% and others including renewable sources at 8% (Doman, 2004). Fossil fuel dependence is expected to be 90% by 2020 (Pilavachi, 2002).

In Canada, between 1990 and 2003, secondary energy use – the energy used to heat and cool homes and workplaces, to operate appliances, vehicles and factories – increased 22%, from 6950 to 8460 petajoules (PJ) (NRCan, 2005). Consequently, secondary energy-related GHG emissions increased 23% from 410 to 500 megatonnes (Mt) (NRCan, 2005). As Figure 1.1 indicates, over 17% of this energy use was in the residential sector contributing 16% of the total secondary energy-related GHG emissions (NRCan, 2005).

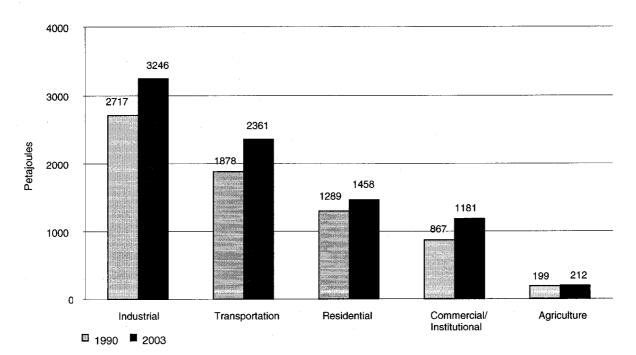
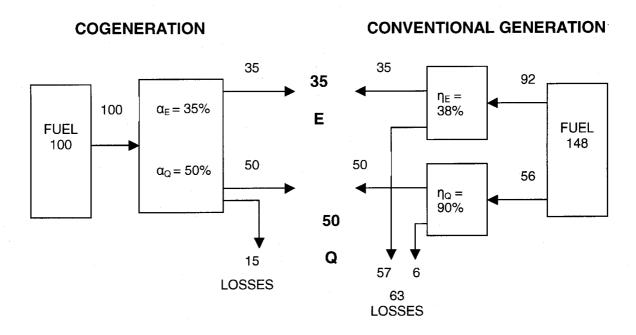



Figure 1.1 Energy Use by Sector, 1990 and 2003 (Petajoules) (NRCan, 2005)

In response to increasing GHG emissions resulting from increasing energy demand and consequent fossil fuel use, Canada has agreed, under the Kyoto Protocol, to reduce its annual GHG emissions to levels 6% below that of 1990 by 2012. Published by the Government of Canada, the Action Plan 2000 outlines Canada's commitment to reduce GHG emissions by approximately 65 Mt per year during the commitment period of 2008-2012 with 10% of the reductions expected to come from the residential sector (Government of Canada, 2000).

1.2 Cogeneration

Cogeneration, also known as combined heat and power (CHP), is defined as the simultaneous production of electrical or mechanical energy and useful thermal energy from a single energy stream such as oil, coal, natural or liquefied gas, biomass or solar (ASHRAE, 2000). Cogeneration is a well-proven technology that has been used for over 125 years. Its first appearance was in industrial plants in the 1880s when steam was the primary source of energy in industry and electricity was just surfacing as a product for both power and lighting (Knight and Ugursal, 2005). Figure 1.2 shows the difference between cogeneration and conventional generation.

Where:

 $\alpha_{\rm E}$ = part of the energy transformed into electricity in a cogeneration unit

 α_Q = part of the energy transformed into usable heat in a cogeneration unit

 η_E = electrical yield of an electrical power plant (production of electricity only)

 η_0 = yield of a boiler (production of heat only)

E = electricity demand

Q = thermal demand

The efficiency of a cogeneration system is defined as the ratio of energy output to fuel input as shown in Equations 1.1 and 1.2. Many manufacturers base engine power ratings on the lower heating value (LHV) (ASHRAE, 2000). Thus when defining efficiency, the LHV of the fuel is used, where LHV is defined as the higher heating value of the fuel (HHV) less the energy required to vaporize the water produced during the combustion process (Onovwiona and Ugursal, 2006).

Electrical Efficiency =
$$\frac{\text{electrical output (kW)}}{\text{fuel input (kW)}}$$
 [1.1]

While cogeneration can provide thermal and electrical energy at higher efficiencies than conventional methods, many applications still involve the burning of fossil fuels resulting in combustion products that are harmful to the environment. The combustion products obtained from the burning of fossil fuels include carbon dioxide (CO_2), oxides of nitrogen (NO_x), sulphur dioxide (SO_2), carbon monoxide (CO), unburned hydrocarbons and particulates. However, due to the increased efficiency of cogeneration systems, less fuel has to be used in order to produce the same amount of useful energy, resulting in lower GHG emissions using cogeneration when compared to conventional generation methods.

Currently, there are a number of types of cogeneration systems available commercially with others at various stages of research and development. With respect to single-family dwellings, there are several systems that could be applicable including reciprocating internal combustion engine (ICE) (spark ignition – gasoline, natural gas, propane, or compression ignition – diesel), micro gas turbine based systems, fuel cell based systems and Stirling engine based systems. Any of these systems could be used in place of a boiler or furnace and used to produce the required thermal and electrical energy while surplus energy could be sold to the local utility grid or stored in an energy storage device (Onovwiona and Ugursal, 2006).

1.3 Techno-Economic and Environmental Analyses

To aid in the implementation of residential cogeneration systems, computer modeling and simulation techniques can be used to determine information regarding the technical,

economic and environmental aspects of cogeneration. Assessing the techno-economic feasibility and environmental impacts of cogeneration and providing conclusions about the feasibility of using cogeneration on a residential level are critical in the development of the residential cogeneration industry.

While the energetic performance of a cogeneration system for residential use is key, factors such as the economic cost, environmental benefits and the impact of electricity rate structure are important aspects to be considered in determining the feasibility of residential cogeneration. In order to ensure that the use of a residential cogeneration system is economically viable, a feasibility analysis must be undertaken, and is one of the main objectives of this research project.

1.4 **Objectives**

This research project has the following objectives:

- Using a high-resolution building energy simulation program, to conduct building energy simulations to predict and compare the annual energy requirements and energy consumption of single detached houses in Canada using conventional and cogeneration energy systems.
- To evaluate the feasibility of residential cogeneration in Canada. The performance of the cogeneration system in terms of efficiency and ability to meet the electrical and thermal demands will be analyzed.
- To determine the economic feasibility of residential cogeneration in Canada. The economic performance under both flat rate and time-of-use electricity pricing scenarios will be examined.
- To determine the environmental impacts of residential cogeneration versus conventional technologies. Analyses on the GHG emissions will be done and conclusions drawn about the environmental impacts of using cogeneration.

Chapter 2

Review of Cogeneration Technologies

2.1 Conventional Methods Used to Heat and Power Residential Spaces

Typically, Canadian homes receive electricity from the electrical grid and have onsite equipment for thermal energy generation as illustrated in Figure 1.2. Under this scheme, up to 1.5 times the amount of fuel is required to meet the electrical and thermal demands when compared to cogeneration, depending on the way in which the electricity was generated. While conventional thermal energy generation equipment (i.e. boilers, furnaces) may have high efficiencies (~90% based on HHV), the efficiency by which electrical energy is produced by the conventional power plant is less than 35% (based on HHV) and is reduced even further by distribution and transmission losses. In addition, two sources of fuel are needed – one at the offsite power plant and one at the onsite thermal plant, compared to one fuel source for onsite cogeneration systems, yielding lower overall efficiencies and increased GHG emissions.

2.2 **Residential Cogeneration**

Currently, there are several cogeneration systems available for use in residential buildings including reciprocating internal combustion engine (ICE) (spark ignition – gasoline, natural gas, propane, or compression ignition – diesel) based systems, micro gas turbine based systems, fuel cell based systems and Stirling engine based systems (Onovwiona and Ugursal, 2006). A brief description of each system and its advantages and disadvantages are presented here while a more detailed description of ICE based cogeneration is given in Section 2.3. Both sections are based on two recent review papers (Onovwiona and Ugursal, 2006) and (Knight and Ugursal, 2005) which provide a comprehensive review of the available technologies.

Reciprocating internal combustion engines are well suited to residential cogeneration due to their robust and well-proven technology. They are commercially available over a wide range of sizes, can utilize a wide variety of fuels and operate with high (>80%) availability making them well suited to numerous cogeneration applications including residential cogeneration. The reciprocating internal combustion engine based cogeneration system has several key advantages over competing technologies (i.e. fuel cell, micro-turbine and Stirling engine based cogeneration systems) including low capital cost, reliable onsite energy, low operating cost, ease of maintenance and wide service infrastructure. In addition, with proper maintenance, modern internal combustion engine based cogeneration systems operate at high levels of availability.

Micro-turbine based cogeneration systems are a scaled down version of conventional combustion turbines that can achieve electrical efficiencies of approximately 30% and overall efficiencies of approximately 80% (based on LHV). Currently, micro-turbine based cogeneration systems are commercially available in sizes ranging from 20-80 kW sizes suitable for multi-family dwellings, commercial or institutional buildings. Specifically, Capstone Turbine Corporation (30 kW), Honeywell Power Systems (75 kW), Elliot/Bowman Company (45 kW and 80 kW), Kohler Power Systems (80 kW), and Turbec (105 kW) manufacture commercially available cogeneration systems. Installed costs of micro-turbine cogeneration systems vary depending on project and site specific factors, however, the capital costs of micro-turbine based cogeneration systems have been estimated to be between US\$ 1560 – US\$ 2520 kWe⁻¹. In addition, presentations from the Third Annual Workshop on Microturbine Applications held in 2003 summarize the operational experience of a multitude of installed micro-turbine based CHP projects concluding that installed costs are less than US\$ 3000 kW_e^{-1} (CANMET, 2003). Research is ongoing for systems suitable for single-family dwellings with capacities ranging from 1-10 kW.

Micro-turbine based cogeneration systems have several advantages over reciprocating internal combustion engine based cogeneration systems. These advantages include compact size, low weight, small number of moving parts, lower noise, multi-fuel capability (including fuels such as natural gas, diesel, landfill gas, ethanol, industrial off-gases and other bio-based liquids), low emission levels, higher heat recovery potential due to high grade waste heat, low maintenance requirements, and low vibration. However, internal combustion based systems are able to achieve higher efficiencies at lower power ranges than micro-turbine based cogeneration systems.

Fuel cell technology, while still considered an emerging technology, has potential to be used successfully in cogeneration applications while offering many environmental benefits when compared to conventional generation or reciprocating internal combustion based cogeneration systems. Advantages offered by fuel cell based cogeneration include low noise levels, potential for low maintenance, excellent part load management, low emissions and high overall efficiencies – up to 85-90% (based on HHV).

With respect to emissions, stationary fuel cells powered by natural gas produce less GHG emissions compared to combustion based cogeneration systems. Specifically, carbon dioxide (CO₂) emissions may be reduced by up to 49%, nitrogen oxide (NO_x) emissions by 91%, carbon monoxide by 68% and volatile organic compounds by 93% making fuel cell based cogeneration attractive from an environmental perspective. As fuel cell based cogeneration is still an emerging technology, high cost and short lifetime are the major disadvantages of this system. However, research into developing less costly materials and mass production processes is ongoing and it is expected that the cost of fuel cell based cogeneration will decrease in the future. A survey conducted by Fuel Cell Today in December 2006 lists companies that are actively involved in the development of residential fuel cell based cogeneration system including (Adamson, 2006):

- Acumentrics (USA): developing a number of products for CHP systems using its tubular SOFC.
- Ebara Ballard (Canada): released its next generation residential cogeneration fuel cell, the Mark 1030 V3 1 kW stack.
- Centrica (UK): developing CHP fuel cell units specifically for the UK market.
- European Fuel Cells (Germany): developing a 'Fuel Cell Heating Unit (FCHU)' which will cover 75% of the heating demand of a typical European single family home. The PEM, natural gas fuelled unit is anticipated to remain a 1.5 kW electrical output.
- Idemitsu Kosan (Japan): testing a number of different cogeneration units, in terms of fuel and size.
- Japan Energy (Japan): in conjunction with Toshiba Fuel Cell Power Systems has installed a number of LPG fuelled 700W fuel cells into homes that it serves with a reported electrical efficiency of 33% (HHV) and thermal efficiency of 45% (HHV).
- Koa Gas Development Corporation (Japan): introduced an LPG fuelled home-use cogeneration system of 750W output.
- Kyushu Oil (Japan): in conjunction with Toshiba Fuel Cell Power Systems, are testing and marketing LPG PEM CHP units.
- Matsushita Electric Industrial (Japan): Currently installing PEM based CHP units with 33% (HHV) electrical efficiency and 45% (HHV) thermal efficiency and marketing houses with these units pre-installed.
- Nuvera (Italy): currently producing its 3rd generation Avanti CHP (5 kWe and 7 kWth) unit
- Sanyo Electric (Japan): developing a 1 kW PEM unit for the domestic CHP market.
- Saibu Gas (Japan): started demonstration tests of cogeneration system of homeuse PEM systems.

 Toshiba Fuel Cell Power Systems (Japan): is the new subsidiary formed by Toshiba for the sole purpose of commercialisation of its 1 kW residential PEM fuel cells by 2008. The technical targets for the system include overall efficiency of > 77% (HHV) and 80 °C waste heat.

As can be seen from the above list, many of the residential fuel cell based cogeneration systems are still in the pre-commercialisation phase.

Currently, proton exchange membrane (PEM) fuel cells have been identified as the preferred technology among residential CHP projects as this type of fuel cell runs at temperatures of approximately 90°C, thus avoiding the need for special expensive materials (d' Accadia et al., 2003). Conversely, solid oxide fuel cells (SOFC) operate at temperatures around 800°C, requiring the use of expensive materials (d' Accadia et al., 2003). With electrical efficiencies up to 40% (based on HHV), SOFC's perform better than PEMFC technology, but start-up and cooling phases last longer which affects time and costs required for installation, maintenance and repair (d' Accadia et al., 2003).

Fuel cell based residential cogeneration is still in the development and demonstration phases thus little information on installation and maintenance costs is available. D'Paepe et al. (2006) determined the installation and maintenance costs of a natural gas fuelled 4 kWe Idatech fuel cell, with 9kWth output to be 140,000 \in and 35 \notin /year respectively.

Stirling engine based cogeneration, while not widely used, has good potential because of several advantages including its ability to attain high efficiency, fuel flexibility, low emissions, low noise/vibration levels and good performance at partial load. In addition, the heat supply in a Stirling engine is from an outside source thus allowing for a wide variety of fuels to be used including conventional fuels such as fossil fuels and renewable energies such as solar and biomass. Due to the continuous combustion process taking place outside of the engine and having fewer moving parts than a reciprocating internal

combustion engine, Stirling engines have low wear and longer maintenance free operating periods, operate more quietly and are smoother than reciprocating internal combustion engines.

Stirling engine based cogeneration systems are being developed by several companies, including:

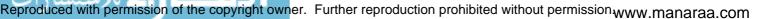
- Infinia Corporation (USA) (Infinia Corporation, 2005): Infinia has worked with several technology development partners to create CHP systems based on its Stirling generators, for residential applications. In the next two years, these products are expected to enter into volume production and facilitate large-scale deployment of clean, efficient CHP systems. The ENATEC consortium in the Netherlands and Rinnai in Japan both use Infinia Stirling generator technology in their residential CHP systems achieving CHP efficiencies as high as 95%.
- SOLO Stirling Engine (Germany) (SOLO Stirling Engine, 2006): currently manufactures Stirling-engine based CHP systems ranging from 2 9.5 kW_e, 8 26 kW_{th} with CHP efficiencies between 92% 96% (based on HHV).
- WhisperGen Limited (New Zealand) (WhisperGen, 2004): currently manufactures
 1 kW_e (7.5 12 kW_{th}) Stirling engine based cogeneration systems.
- Sunpower Inc. (USA) (Sunpower, 2006): developed and delivered a variety of free-piston Stirling power generators at power levels between 35 W_e 7.5 kW_e. Applications to residential cogeneration are expected to enter the market in 2007.
- Sigma Elektroteknisk (Norway) (Sier, 2002): currently working on industrialising the PCP (Personal Combustion Powerplant), a micro energy converter utilizing a Stirling engine as the prime mover. The PCP 1-130 is an energy converter based on a Stirling engine designed in Sweden to be used in micro CHP applications with 1.5 kW_e generator and 9kW_{th} of available heat.

Still considered an emerging technology, there is little information available on the cost of Stirling engine based cogeneration, however, De Paepe et al. (2006) have summarized

the installation and maintenance costs for two Stirling engine based cogeneration systems, namely the Stirling 161 microKWK module manufactured by SOLO and the WhisperGen manufactured by WhisperGen Limited. These costs are summarized in Table 2.1.

Crustom	System Capacity	Installation	Maintenance	
System	(kW) Cost (€)		Costs (€/yr)	
Solo	$2 - 9.5 \text{ kW}_{e}$	25000	75	
5010	8 –26 kW _{th}	23000	,5	
WhisperGen	1 kWe	9000	75	
winsper Gen	4.9-8 kW _{th}	2000		

 Table 2.1: Stirling Engine Based Cogeneration Costs


2.3 Internal Combustion Engine (ICE) Based Cogeneration

Reciprocating internal combustion engines are classified based on the internal combustion engine cycle: Otto cycle and Diesel cycle (EDUCOGEN, 2001). In an Otto cycle, a mixture of air and fuel is compressed in each cylinder and an externally supplied spark causes ignition. In a Diesel cycle, only the air is compressed in the cylinder, and fuel is injected into the cylinder when the cylinder is near the end of its compression stroke. Ignition is spontaneous due to the high temperature of the compressed air. Otto engines can operate on a wide range of fuels including gasoline, natural gas, propane, sewage plant gas and, landfill methane while diesel engines operate on higher pressure and temperature levels, thus utilize heavier fuels namely, Diesel oil, fuel oil and residual fuel oil (EDUCOGEN, 2001).

While diesel engines are used mainly for large-scale cogeneration, they can also be used in small-scale applications. Comparatively, spark ignition (SI) engines are better suited to small-scale cogeneration applications as they can produce hot water up to 160°C or a 20 bar steam output, whereas the heat recovery potential is lower in diesel engine based systems, usually achieving maximum temperatures of 85°C. Diesel engines operate with shaft efficiencies from 35% - 45% (based on LHV) while SI engines operate with shaft efficiencies in the range of 27% - 35% (based on LHV) (EDUCOGEN, 2001a). The characteristics that make reciprocating engines the most widely used prime mover in CHP installations under 1 MW_e include good part-load operation, proven technology, wide range of sizes and fuels and ease of maintenance (Hinojosa et al., 2005). In addition, the typical availability of reciprocating internal combustion engines is in the range of 90% - 96%, and according to the North American Electric Reliability Council 1999, average availabilities are above 94% - 96% (EDUCOGEN, 2001a).

The primary emissions related to reciprocating internal combustion engines are oxides of nitrogen (NO_x), carbon monoxide (CO) and volatile organic compounds (VOCs – unburned, non-methane hydrocarbons). Specifically, NO_x emissions are a result of burning fossil fuel in the presence of oxygen. The level of NO_x emissions is dependent on several factors that can be optimized to reduce NO_x production including temperature, pressure, and combustion chamber geometry and air-fuel mixture. NO_x emissions can be reduced markedly by operating with a large excess of combustion air (lean burn) (EDUCOGEN, 2001a). In addition, low NO_x emissions are achieved using engines fitted with air/fuel ratio controllers and stoichiometric engines fitted with three-way catalytic converters, where a three-way catalytic converter treats the exhaust gases with catalysts to convert NO_x back to nitrogen and oxygen. Through better design and control of combustion as well as the use of exhaust catalysts, the emissions profile of modern natural gas fired SI engines has improved drastically making lean burn natural gas fired engines the lowest emitter of NO_x while diesel engines produce the most.

The electrical efficiencies of reciprocating internal combustion engine-coupled generators are in the range of 28-39% (based on LHV) and tend to increase as the engine size increases, while the overall efficiency of a reciprocating internal combustion based

cogeneration system is in the range of 85-90% (based on LHV) with little variation due to size. Figure 2.1 shows a reciprocating internal combustion engine based cogeneration system.

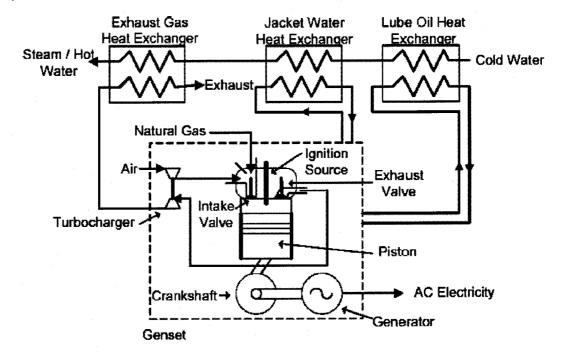


Figure 2.1: Typical Packaged Internal Combustion Engine Based (spark ignited) Cogeneration System (Onovwiona, 2005)

There are four sources from which heat can be recovered in a reciprocating internal combustion based cogeneration system as illustrated above. The four sources are the exhaust gas, engine jacket cooling water, lube oil cooling water and turbocharger cooling. The majority of the heat that is recovered comes from the exhaust stream, accounting for between 30-50%, while the engine-cooling jacket represents up to 30% of the heat recovery. The heat recovery potential from lube oil cooling is generally low grade and not always usable (EDUCOGEN, 2001a), therefore by recovering the heat from the exhaust stream and the engine jacket cooling, between 70-80% of the fuel used is converted into electricity and useful heat.

Currently, there are several manufacturers that offer reciprocating internal combustion based cogeneration systems suitable for residential use. Specifically, Honda Motor Co. has developed a cogeneration system for single-family residential applications with a 1 kW electrical output and a 3 kW thermal output with an overall efficiency of 85% (based on LHV), while a German company Senertec, manufacturers a 5.5 kW electrical, 10 kW thermal cogeneration system. There are several companies that offer larger systems better suited to multi-family, commercial and institutional applications including Tokyo Gas (6 kW), The Yanmar Diesel Engine Co. in collaboration with Osaka Gas Co. (8.2-9.8 kW), Cummins, Inc. (7.5 – 1750 kW), Lister-Petter, Inc. (5-400 kW), Alturdyne Power Systems, Inc. (25kW-2MW), Tecogen, Inc. (60-75 kW) and DTE Energy (10-1000 kW).

Capital costs for reciprocating internal combustion engine based cogeneration systems are low compared to other technologies (i.e. fuel cell, micro-turbine and Stirling engine based cogeneration systems). In general, systems less than 500 kW in size cost between 800 and 1300 \$/kW, with the cost for smaller systems higher. Maintenance costs vary depending on the type, speed, size, and number of cylinders of an engine. Maintenance costs include maintenance labour, engine components and materials such as oil filters, air filters, spark plugs, gaskets, valves, piston rings, and oil. In addition, maintenance costs include minor and major overhauls where minor overhauls involve changing of engine oil, coolant and spark plugs, are often carried out for every 500-2000 hours of operation. Major overhauls include a top-end overhaul at 12000-15000 hours of operation including a cylinder head and turbo-charger rebuild and for a major overhaul at 24000-30000 hours of operation including piston/ring replacement and replacement of crankshaft bearings and seals.

Chapter 3

Review of Analysis Tools Used

3.1 Building Simulation and ESP-r

Building simulation is a powerful tool used to aid in the assessment of renewable energy technologies in buildings. With respect to both environmental impacts and economics, it is important that critical design decisions can be tested and analyzed using building simulation (Hensen et al., 1993). Due to the progression of computing power, as well as the increasing demand for detailed thermal performance assessments, users regularly employ comprehensive, dynamic thermal appraisal tools which are able to handle the complexity of design (Hensen et al., 1993). Currently, there is a plethora of building simulation software available. For information on the abilities of some of the available software, refer to Crawly et al. (2005).

ESP-r is a transient building energy simulation program developed and maintained by Energy Systems Research Unit (ESRU) at the University of Strathclyde (ESRU, 2002). It is an integrated modeling tool for the simulation of the performance of buildings in terms of thermal, visual and acoustic performance as well as the assessment of the energy use and gaseous emissions associated with the environmental control system and constructional materials (ESP-r, 2000). ESP-r's capabilities have expanded to include thermal behaviour as well as electrical, fluid, acoustic and visual performance (ESP-r, 2000)

Using ESP-r, buildings are modelled as five separate domains. Below is a brief description of each domain (Ferguson, 2003).

Thermal Domain: the thermal domain includes all of the thermal masses contained within the building envelope, as well as the heat transfer (conduction, convection and

radiation) occurring between thermal masses and between the building and its environment The thermal domain is modelled using a heat balance method and the resulting equation set is solved to determine the temperature of each thermal mass in the building envelope.

Plant Domain: the plant domain includes mechanical equipment used to produce electricity and heat for use in the building. ESP-r allows for plants to be modelled at two different levels of complexity:

- Implicit plant models treat mechanical plants as a single control volume exchanging energy with the space and operating at a specified efficiency.
- Explicit plant models are constructed from one or more smaller models that represent separate elements within the plant. This approach allows for the individual plant components to be analysed as well as the plant's interaction with the building to be studied.

Flow Domain: the flow domain considers the flow or movement of air and moisture within the building. ESP-r also includes an optional computational fluid dynamics (CFD) model that can determine airflow patterns inside zones within a building.

Power Domain: ESP-r has the ability to simulate complete electrical systems, including lighting equipment and equipment energy use, on site generation devices, and electrical distribution networks.

Control Domain: ESP-r allows a number of control schemes, including ideal, proportional-integral-derivative and adaptive strategies, to be imposed in the building mechanical equipment.

Each of ESP-r's five modeling domains is interdependent and at any one time, the state of each domain is dependent on the states of the other four domains. Each of the five domains is treated using a separate module, and due to the interdependence of the domains, ESP-r determines the solutions of all five domains simultaneously.

Modeling in ESP-r can be achieved using the Project Manager. ESP-r's Project Manager allows for the specification of the model in terms of (Clarke, 1994):

- 3D building geometry with attribution in relation to opaque and transparent material, surface finishes, occupancy, lighting schemes, small power and leakage distribution, with superimposed events to represent phenomena such as window opening, shading device positioning and electric light switching.
- Plant specifications in terms of networks of connected components representing the thermodynamic process occurring yielding pressure and temperature differences that drive heat transfer between, and the flow of, the working fluid.
- Control system specification in terms of a list of control loops.

While the Project Manager is useful in defining a building and plants that are available in the ESP-r database, extending modeling functionality or adding a plant to the database requires the source code to be revised. ESP-r has achieved this by compartmentalizing the source code into technical domains. This allows for changes to be made to one area of the model's code without affecting other areas. Figure 2.2 illustrates the difference between using the project manager and dealing with the source code.

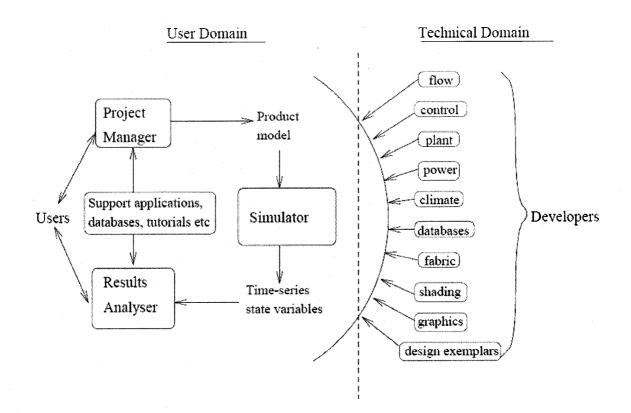


Figure 2.2: ESP-r: Project Manger versus Technical Domains (ESRU, 2002)

ESP-r is a comprehensive modeling and simulation tool. It aims to represent all relevant phenomena, and to process these phenomena simultaneously so that the interrelationships are preserved (Clarke, 1994). This is achieved by establishing sets of conservation equations for different spatial regions and arranging for the integration of these equations over time (Clarke, 1994). Finally, the theories upon which heat transfer and fluid flow within ESP-r are based and the numerical techniques used are detailed in (Hensen, 1991).

3.2 Feasibility and Sensitivity Analyses

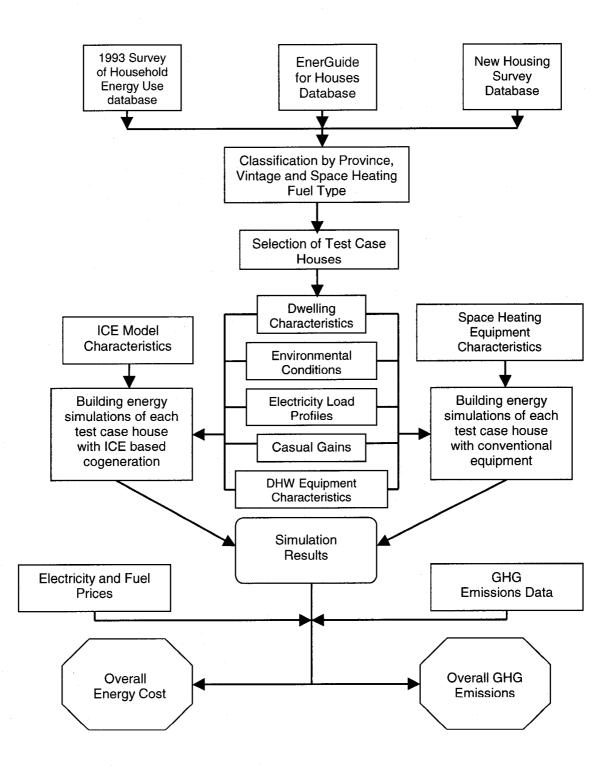
There have been several studies published in recent years investigating the feasibility of residential cogeneration. Peacock and Newborough (2005) investigated the potential

economic and CO_2 emissions savings using Stirling engine and fuel cell based cogeneration in the UK while Hawkes et al. (2007) concentrated on SOFC based cogeneration in the UK. De Paepe et al. (2006) investigated the potential cost and CO_2 emissions reductions using ICE, fuel cell, and Stirling engine based cogeneration in Belgium in both single detached and terraced houses. Several Italian studies (Santangelo and Tartarini, 2007), (Possidente et al., 2006), and (d'Accadia et al., 2003) have investigated the reduction in cost and CO_2 emissions using ICE, fuel cell (PEMFC and SOFC), and Stirling engine based cogeneration systems and Dorer et al. (2005) investigated the potential economic savings and CO_2 reduction in single and multi-family dwellings in Switzerland using PEMFC and SOFC based cogeneration. In Canada, Entchev et al. (2006) investigated the financial viability of SOFC based cogeneration in single-family dwellings.

While ICE based cogeneration is a well-proven technology (Knight and Ugursal, 2005), the feasibility of such systems is not well understood, especially in the Canadian context (Onovwiona, 2005). The current work seeks to improve the understanding of the feasibility of ICE based cogeneration in Canada with emphasis on the economic viability and potential GHG reductions. The ICE based cogeneration system model developed by Onovwiona (2005) for the ESP-r platform will be used as the simulation tool for the analysis. Moreover, a thorough sensitivity analysis will improve understanding of the performance of ICE based cogeneration systems and will allow for conclusions to be drawn regarding the sizing of ICE based cogeneration systems in residential applications.

Chapter 4 Methodology

The purpose of this study is to investigate the economic and environmental impacts of using ICE based cogeneration in single detached houses in Canada. To provide an indication of the potential economic savings and reductions in GHG emissions using ICE based cogeneration in single detached Canadian homes, information from three publicly available Canadian databases was used to model test case houses in ESP-r to be used in building energy simulations. The Survey of Household Energy Use (SHEU) database (Statistics Canada, 1993) was the main database used, however was lacking vital information, therefore two other databases were also used namely, the EnerGuide for Houses (EGH) database (NRCan, 2005) and the New Housing Survey (NHS) database (NRCan, 1997). Note that only houses heated by natural gas or oil were considered in this project as houses heated by either electricity or wood do not have the necessary infrastructure needed to install an ICE based cogeneration system. Moreover, the SHEU database does not include data from Yukon, the Northwest Territories and Nunavut and these territories were therefore not included in this project.


The SHUE and EGH databases were classified into categories according to province, vintage, namely, before 1941, 1941-1960, 1961-1977, 1978 and later, and lastly by space heating fuel type, either natural gas or oil, yielding 8 category groups per province. The NHS database was classified on the basis of province only, as there were not enough entries to allow for further classification. The SHEU database contains weighting factors for each of the houses in the database. The weighting factors indicate the number of houses that a particular house in SHEU represents in the Canadian housing stock. The selection of test case houses was based on the weighting factors in SHEU. The SHEU weighting factors were summed for each category group, and the three highest ranking groups per province, based on the SHEU weighting factors, were chosen as the test case houses yielding 30 test case houses overall.

The test case house dwelling characteristics and space and domestic hot water heating equipment characteristics were determined by conducting a simple statistical analysis of the data provided in SHEU, EGH, and NHS databases. To account for the effect of appliance and lighting usage, electricity load profiles detailing the electricity demand in fifteen-minute intervals were identified for each test case house based on data from BC Hydro (Good et al., 2004).

The test case houses were simulated using the building simulation program ESP-r. Two sets of simulations were conducted to estimate the thermal and electrical demands of the test cases houses. The first set of simulations was conducted using conventional methods, for example, natural gas or oil fuelled furnace and domestic hot water tank, and electricity from the grid, and the second set of simulations was conducted using ICE based cogeneration.

A sensitivity analysis was performed on the ICE based cogeneration model to study the impact on cost and GHG emissions of varying the ICE and thermal storage tank capacities. Two ICE capacities (1 kW and 2 kW) and two hot water storage tank sizes (300 litres and 450 litres) were simulated in each of the test case houses. The simulation results from all simulations, using conventional methods and ICE based cogeneration, were analyzed on the basis of cost, using a flat rate and time-of-use electricity pricing scheme, and potential GHG emission reductions. Conclusions were drawn regarding the economic and environmental impacts of using ICE based cogeneration in single detached Canadian homes.

Figure 4.1 illustrates the methodology followed in this project.

Figure 4.1: Methodology Flow Chart

Chapter 5

Database Classification and Test Case House Selection

5.1 Database Description

To determine a group of test case houses and to have sufficient data from which ESP-r house models could be developed, three databases were used. Below is a description of each database. Appendix A lists the data available in each database.

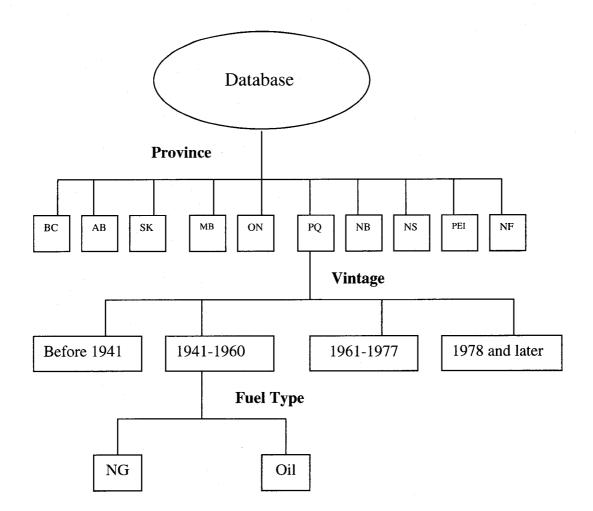
5.1.1 Survey of Household Energy Use Database

The Survey of Household Energy Use (SHEU) 1993 database (Statistics Canada, 1993) contains detailed information on 8767 houses, representing more than seven million lowrise, single-family dwellings in Canada and is the most comprehensive and statistically representative survey on household energy use in Canada. This survey was conducted by Statistics Canada for Natural Resources Canada in 1993 using both mail-in and telephone interview techniques. The 1993 SHEU database contains detailed information regarding dwelling characteristics, socio-demographical characteristics, as well as information on appliance usage. The database contains weighting factors for each house which quantify the number of houses each entry in the SHEU database represents in Canada. Information regarding the house size, occupancy, number of storeys, number of doors and windows, space heating equipment and fuel type and temperature set points are available in SHEU and this information was used to model the test case houses in ESP-r. However, the information available in SHEU, data from the EnerGuide for Houses database and the New Housing Survey database was used.

5.1.2 EnerGuide for Houses Database

The EnerGuide for Houses Initiative, a large-scale home energy audit program, was launched in April 1998 and was subsidized by Natural Resources Canada (Fung, 2003). Participation in the EGH program was voluntary and interested homeowners contacted the EGH representative in their area to arrange an audit. The EGH program calculated a measure of energy efficiency, called the "EnerGuide Rating" for each house audited, as well as collected information on the dwelling and space and domestic hot water heating equipment characteristics. The EnerGuide for Houses (EGH) database is a management information tool and central depository for tracking residential energy evaluations and measuring benefits from the energy evaluations delivered across Canada (Blais et al., 2005). The database contains more than 165,000 houses rated across Canada, containing more than 162 information fields per house detailing information on its physical characteristics and energy use (Blais et al., 2005). Equipment type and efficiency levels for space heating and domestic hot water equipment, air change rates and insulation values for the main walls, ceiling and foundation were taken from this database and used to develop the ESP-r test case house models, as this information was not available in SHEU.

5.1.3 New Housing Survey Database


The 1994 New housing survey (NHS) was conducted by Criterion Research Corp. between September 1995 and February 1996 for Natural Resources Canada surveying 2300 participants from all provinces except Prince Edward Island via a mailed out survey (NRCan, 1997). The NHS database contains detailed information on dwelling characteristics, specifically detailed information on window types and window location. Information on house orientation and the relative window distribution (i.e. percentage of windows on each side of the house) were taken from this database, as this information is not available in SHEU or EGH databases.

5.2 Housing Classification

The scope of the project is limited to simulating single detached dwellings, since there is not sufficient data available to develop building energy simulation model input files for low and high-rise apartments, and mobile homes (Fung, 2003). In addition, single-detached houses account for 70% of the SHEU database thus all attached houses, including semi-detached, row, duplex, mobile homes, and low and high-rise apartments are excluded. In addition, only houses heated by either natural gas or oil were considered, as they would have the infrastructure needed to implement a cogeneration system, thus houses heated by electricity were not considered in this analysis. Houses heated by fuels other than natural gas or oil are also excluded as houses using these fuels are not widespread enough (less than 15%) to be considered a test case house. Also, because the SHEU database does not contain any houses from the Yukon Territories, the Northwest Territories and Nunavut, they are not included in the analysis. The NHS database does not contain information on house type (e.g. detached or attached), therefore all entries were utilized.

To determine the test case houses, the databases had to be classified. The classification categories used to classify both SHEU and EGH are illustrated in Figure 5.1.

Figure 5.1: Classification Scheme

As illustrated in Figure 5.1, the first step in classification process was to categorize the SHEU and EGH databases by province as listed below:

Province:

- British Columbia
- Alberta
- Saskatchewan
- Manitoba
- Ontario

28

- Quebec
- New Brunswick
- Nova Scotia
- Prince Edward Island
- Newfoundland

Once classified by province, the data in SHEU and EGH was classified by vintage, namely before 1941, 1941-1960, 1961-1977 and 1978 and later and further classified by space heating fuel type, namely natural gas and oil.

Tables 5.1 - 5.10 present the results of the classification process for the SHEU (weighted values) and EGH databases based on province, vintage and space heating fuel type.

	SHEU		· · · · · · · · · · · · · · · · · · ·	EGH	
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries
before 1941	NG	50510	before 1941	NG	2231
before 1941	OIL	11009	before 1941	OIL	411
1941-1960	NG	71086	1941-1960	NG	4377
1941-1960	OIL	23339	1941-1960	OIL	580
1961-1977	NG	186858	1961-1977	NG	10912
1961-1977	OIL	29225	1960-1977	OIL	641
1978 and later	NG	139032	1978 and later	NG	8367
1978 and later	OIL	5733	1978 and later	OIL	127

 Table 5.1: Classification Results – British Columbia

	SHEU			EGH	
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries
before 1941	NG	47305	before 1941	NG	1951
before 1941	OIL	0	before 1941	OIL	3
1941-1960	NG	102455	1941-1960	NG	6523
1941-1960	OIL	870	1941-1960	OIL	5
1961-1977	NG	195889	1961-1977	NG	11706
1961-1977	OIL	4363	1960-1977	OIL	4
1978 and later	NG	152023	1978 and later	NG	9743
1978 and later	OIL	0	1978 and later	OIL	1

Table 5.2: Classification Results – Alberta

Table 5.3: Classification Results - Saskatchewan

	SHEU			EGH		
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries	
before 1941	NG	39770	before 1941	NG	1645	
before 1941	OIL	5268	before 1941	OIL	84	
1941-1960	NG	52328	1941-1960	NG	2695	
1941-1960	OIL	4259	1941-1960	OIL	92	
1961-1977	NG	73206	1961-1977	NG	4787	
1961-1977	OIL	4805	1960-1977	OIL	127	
1978 and later	NG	53821	1978 and later	NG	3360	
1978 and later	OIL	1077	1978 and later	OIL	38	

Table 5.4: Classification Results – Manitoba

	SHEU			EGH		
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries	
before 1941	NG	38044	before 1941	NG	2545	
before 1941	OIL	2840	before 1941	OIL	64	
1941-1960	NG	48801	1941-1960	NG	2944	
1941-1960	OIL	4732	1941-1960	OIL	66	
1961-1977	NG	50603	1961-1977	NG	2902	
1961-1977	OIL	3939	1960-1977	OIL	47	
1978 and later	NG	24936	1978 and later	NG	1369	
1978 and later	OIL	985	1978 and later	OIL	14	

	SHEU			EGH	
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries
before 1941	NG	287837	before 1941	NG	10191
before 1941	OIL	124939	before 1941	OIL	2692
1941-1960	NG	276848	1941-1960	NG	9580
1941-1960	OIL	109347	1941-1960	OIL	2077
1961-1977	NG	257750	1961-1977	NG	9968
1961-1977	OIL	59866	1960-1977	OIL	1511
1978 and later	NG	444964	1978 and later	NG	9617
1978 and later	OIL	10574	1978 and later	OIL	484

Table 5.5: Classification Results – Ontario

Table 5.6: Classification Results – Quebec

	SHEU			EGH		
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries	
before 1941	NG	0	before 1941	NG	289	
before 1941	OIL	64932	before 1941	OIL	944	
1941-1960	NG	13720	1941-1960	NG	409	
1941-1960	OIL	50048	1941-1960	OIL	1603	
1961-1977	NG	17587	1961-1977	NG	872	
1961-1977	OIL	111517	1960-1977	OIL	1441	
1978 and later	NG	0	1978 and later	NG	206	
1978 and later	OIL	2278	1978 and later	OIL	144	

Table 5.7: Classification Results – New Brunswick

	SHEU			EGH	
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries
before 1941	NG	0	before 1941	NG	4
before 1941	OIL	15438	before 1941	OIL	260
1941-1960	NG	0	1941-1960	NG	7
1941-1960	OIL	13858	1941-1960	OIL	166
1961-1977	NG	0	1961-1977	NG	2
1961-1977	OIL	14416	1960-1977	OIL	149
1978 and later	NG	161	1978 and later	NG	1
1978 and later	OIL	2631	1978 and later	OIL	41

	SHEU			EGH	
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries
before 1941	NG	531	before 1941	NG	0
before 1941	OIL	40453	before 1941	OIL	1349
1941-1960	NG	529	1941-1960	NG	0
1941-1960	OIL	27521	1941-1960	OIL	875
1961-1977	NG	451	1961-1977	NG	0
1961-1977	OIL	42123	1960-1977	OIL	674
1978 and later	NG	0	1978 and later	NG	3
1978 and later	OIL	17625	1978 and later	OIL	434

Table 5.8: Classification Results – Nova Scotia

Table 5.9: Classification Results – Prince Edward Island

	SHEU			EGH		
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries	
before 1941	NG	0	before 1941	NG	0	
before 1941	OIL	6873	before 1941	OIL	125	
1941-1960	NG	121	1941-1960	NG	0	
1941-1960	OIL	2903	1941-1960	OIL	44	
1961-1977	NG	0	1961-1977	NG	0	
1961-1977	OIL	7371	1960-1977	OIL	130	
1978 and later	NG	0	1978 and later	NG	0	
1978 and later	OIL	7537	1978 and later	OIL	99	

Table 5.10: Classification Results - Newfoundland

	SHEU			EGH	
Vintage	Fuel Type	# of Entries	Vintage	Fuel Type	# of Entries
before 1941	NG	0	before 1941	NG	0
before 1941	OIL	7950	before 1941	OIL	170
1941-1960	NG	0	1941-1960	NG	0
1941-1960	OIL	13568	1941-1960	OIL	270
1961-1977	NG	0	1961-1977	NG	0
1961-1977	OIL	16340	1960-1977	OIL	256
1978 and later	NG	176	1978 and later	NG	2
1978 and later	OIL	10056	1978 and later	OIL	181

The NHS database was classified on the basis of province only as there were not enough entries to allow for further classification. The results of the classification are detailed in Table 5.11.

	Number of
Province	Entries
British Columbia	309
Alberta	282
Saskatchewan	147
Manitoba	334
Ontario	446
Quebec	432
New Brunswick	257
Nova Scotia	7
Prince Edward Island	· /
Newfoundland	82

Table 5.11: NHS Classification Results

There were no entries in the NHS for Prince Edward Island, so for the purpose of this study, the data taken from this database for Nova Scotia was used for Prince Edward Island.

5.3 Test Case House Selection

To provide an indication of the potential energy savings and reductions in GHG emissions using ICE based cogeneration in single detached Canadian homes, three representative house archetypes were selected for each province as test case houses. While it is understood that test case houses in the less populated provinces (e.g. Prince Edward Island) will not represent as many homes as test case houses in more populated provinces (e.g. Ontario), it is still advantageous to be able to comment on the economic and environmental impacts of residential cogeneration across all of Canada. In addition, the local climates across Canada vary dramatically and this variation must be taken into account.

The selection of test case houses was based on the weighting factors in the SHEU database. The weighting factors for each classification category were summed, and the three groups per province with the highest sum of weighting factors were chosen as the test case houses for the province. Tables 5.12 and 5.13 present the summed weighting factors for each classification group. The boldface entries are the three highest ranking (according to the sum of weighting factors) categories per province.

Classification Catagory	Province				
Classification Category	BC	AB	SK	MB	
before1941_NG	50510	47305	39770	38044	
before1941_Oil	11009	0	5268	2840	
1941-1960_NG	71986	102455	52328	48801	
1941-1960_Oil	23339	870	4259	4732	
1961-1977_NG	186858	195889	73206	50603	
1961-1977_Oil	29225	4363	4805	3939	
1978_NG	139032	152023	53821	24936	
1978_Oil	5733	0	1077	985	

 Table 5.12: Classification Results for West and Prairie Regions

Table 5.13: Classification Results for Central and Atlantic Regions

Classification	Province					
Category	ON	PQ	NB	NS	PEI	NF
before1941_NG	287837	0	0	531	0	0
before1941_Oil	124939	64932	15438	40453	6873	7950
1941-1960_NG	276848	13720	0	529	121	0
1941-1960_Oil	109347	50048	13858	27521	2903	13568
1961-1977_NG	257750	17587	0	451	0	0
1961-1977_Oil	59866	111517	14416	42123	7371	16340
1978_NG	444964	0	161	0	0	176
1978_Oil	10574	2278	2631	17625	7537	10056

The highest ranking groups per province – the bolded values in Tables 5.12 and 5.13 – were chosen as the test case houses and are listed in Table 5.14

		T 7	
Test Case House	Province	Vintage	Fuel Type
1	BC	1961-1977	Natural Gas
2	BC	1978 and later	Natural Gas
3	BC	1941-1960	Natural Gas
4	AB	1961-1977	Natural Gas
5	AB	1978 and later	Natural Gas
6	AB	1941-1960	Natural Gas
7	SK	1961-1977	Natural Gas
8	SK	1978 and later	Natural Gas
9	SK	1941-1960	Natural Gas
10	MB	1961-1977	Natural Gas
11	MB	1941-1960	Natural Gas
12	MB	before 1941	Natural Gas
13	ON	1978 and later	Natural Gas
14	ON	before 1941	Natural Gas
15	ON	1941-1960	Natural Gas
16	PQ	1961-1977	Oil
17	PQ	before 1941	Oil
18	PQ	1941-1960	Oil
19	NB	before 1941	Oil
20	NB	1961-1977	Oil
21	NB	1941-1960	Oil
22	NS	1961-1977	Oil
23	NS	before 1941	Oil
24	NS	1941-1960	Oil
25	PEI	1978 and later	Oil
26	PEI	1961-1977	Oil
27	PEI	before 1941	Oil
28	NF	1961-1977	Oil
29	NF	1941-1960	Oil
30	NF	1978 and later	Oil

Table 5.14: Test Case House List

5.4 Test Case House Characteristics

To model the test case houses in ESP-r, the average characteristics for each test case house were determined. The information from the three databases had to be handled separately as the methods required in determining averages of each characteristic (i.e. house size, insulation levels, etc) varied. The details of the methods used can be found in Appendix B, and a brief discussion is given below.

5.4.1 Survey of Household Energy Use Database

The SHEU database contains weights for each entry in the database. To determine the average of each characteristic taken from SHEU used to model the test case house in ESP-r, a weighted average approach according to Equation 4.1 was used.

$$X_{Wi} = \frac{\sum X_i W_{SHEU}}{\sum W_{SHEU}}$$
[4.1]

Where: X_{Wi} = weighted average

 $X_i = data$

 W_{SHEU} = SHEU weighting factor corresponding to each entry

In the case where data was invalid or missing, the weight corresponding to the missing or invalid data was removed and a new sum of weights was calculated. See Appendix B for details. In addition, many of the variables in the SHEU database are qualitative variables represented by an indicator variable. The details of averaging indicator variables can also be found in Appendix B.

Table 5.15 lists the characteristics taken from the SHEU database as well as the averaging technique used.

Parameter Number	Parameter Name	SHEU Inquiry Field	Statistical Technique
1	Serial Number	1	-
2	Weight	5	-
3	Occupancy	8	Weighted Average
4	Space Heating Fuel Type	140	Indicator Variable
5	Set-point temperatures (6AM-6PM)	178	Weighted Average
6	Set-point temperatures (6PM-10PM)	179	Weighted Average
7	Set-point temperatures (10PM-6AM)	180	Weighted Average
8	Number of Storeys	181	Indicator Variable
9	Exterior Wall Material	182	Indicator Variable
10	House Size (ft ²)	189	Weighted Average
11	Basement Type	191	Indicator Variable
12	Basement Size	192	Weighted Average
13	Basemetn Heating	201	Weighted Average
14	how much of the basement is area is heated	202	Indicator Variable
15	Attic type	207	Indicator Variable
16	Numer of wood doors with storm door	210	Weighted Average
17	Numer of wood doors	211	Weighted Average
18	Numer of metal doors with storm door	213	Weighted Average
19	Number of metal doors	214	Weighted Average
20	Numer of other doors	218	Weighted Average
21	Numer of 3 pane oversized window	231	Weighted Average
22	Numer of 3 pane other sized windows	232	Weighted Average
23	Numer of 2 pane oversized window	234	Weighted Average
24	Numer of 2 pane other sized windows	235	Weighted Average
25	Numer of 1 pane oversized window with storm wndowes	237	Weighted Average
26	Numer of 1 pane other sized windows witjh storm window	238	Weighted Average
27	Any 1 pane window without storm wndowes	239	Indicator Variable

 Table 5.15: Characteristics from SHEU Database

Parameter Number	Parameter Name	SHEU Inquiry Field	Statistical Technique
28	Numer of 1 pane over sized windows without storm window	240	Weighted Average
29	Numer of 1 pane other sized windows without storm window	241	Weighted Average
30	Air conditionuing usagfe	296	Indicator Variable
31	DHW Fuel	317	Indicator Variable
32	DHW Tank Size	323	Weighted Average
33	DHW add-on insulation blanket	.324	Indicator Variable

Table 5.15 Continued: Characteristics from SHEU Database

5.4.2 EnerGuide for Houses Database

The EGH database does not have weighting factors, thus simple averaging was used. The method used to average indicator variables is discussed in Appendix B.

Table 5.16 lists the characteristics taken from the EGH database as well as the averaging techniques used.

Parameter Number	Parameter Name	EGH Inquiry Field	Statistical Technique
1	Space Heating Equipment Type	7	Indicator Variable
2	Space Heating Equipment Efficiency	8	Simple Average
3	DHW Equipment Type	12	Indicator Variable
4	DHW Efficiency	13	Simple Average
5	Ceiling RSI	19	Simple Average
6	Foundation RSI	20	Simple Average
7	Main Wall RSI	21	Simple Average
8	ACH @ 50 PA	28	Simple Average

 Table 5.16: Characteristics from EGH Database

5.4.3 New Housing Survey Database

Like the EGH database, the NHS database does not contain weighting factors, allowing the simple averages to be used. As mentioned above, the NHS database was classified on the basis of province only, therefore both house orientation and average relative window distribution were averaged for a province and the results used in all three test case houses per province.

Table 5.17 lists the characteristics taken from the NHS database as well as the averaging techniques used.

Parameter Number	Parameter Name	NHS Inquiry Field	Statistical Technique
1	House orientation	58	Indicator Variable
2	Number of front basement windows	61a	Simple Average
3	Number of front main windows	61b	Simple Average
4	Number of back basement windows	64a	Simple Average
5	Number of back main windows	64b	Simple Average
6	Number of left basement windows	67a	Simple Average
7	Number of left main windows	67b	Simple Average
8	Number of right basement windows	70a	Simple Average
9	Number of right main windows	70b	Simple Average

Table 5.17: Characteristics from NHS Database

5.5 Test Case House Descriptions

Tables 5.18 and 5.19 present the data for test case house 1, which is located in British Columbia, built between 1961-1977, and uses natural gas as the space heating fuel. The test case house descriptions for all 30 test case houses are given in Appendix C.

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	3 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.75
Foundation RSI (Km ² /W)	1.82
Ceiling RSI (Km ² /W)	3.91
Roof RSI (Km ² /W)	0.26
Attic	full attic
External Wall Material	wood
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	77.3
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	51.1
Basement Heating	whole basement heated
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	8.07

Table 5.18: Test Case House 1 – Specifications

0
0
1
7
3
11
0
1
1
1
6
7
3
3
3
19

Table 5.19: Test Case House 1 – Window Data

Chapter 6

Load Profile Identification

Individual electricity load profiles were identified for each test case house detailing electricity consumption from appliance and lighting loads in fifteen-minute intervals for an entire year.

6.1 Introduction

Currently, there is no load profile data available in the Canadian public domain. Residential load profile data based on province or dwelling type is not available. It is well known that residential electricity demand varies with socio-economic factors such as household income, dwelling type and ownership, and number of children and adults (Aydinalp et al., 2002a). The availability at home of each household member and their associated home activities also affect the household electricity demand (Capasso et al., 1994). In addition, the shape and magnitude of load profiles also vary with factors such as time of day, time of year, geographical location, and climate (Paatero and Lund, 2006) and (de Dear and Hart, 2002). Due to the absence of load profile data, rather than using arbitrary load profiles, electricity load profiles based on data from B.C. Hydro were used in this study. The B.C. Hydro electricity load profiles are categorized according to geographical regions within British Columbia, namely the Northern, Southern Interior, Lower Mainland, and Vancouver Island regions. Since there is no load profile data available for the remaining provinces, the B.C. load profiles were assigned to the remaining provinces based on heating degree-days. While it is recognized that there are many other factors that affect the shape of the load profile other than the severity of the heating season, the approach detailed below was used in the absence of a more accurate approach due to lack of available data.

6.2 Methodology

Using electricity consumption data for 107 individual yearly accounts of households located in four different regions of British Columbia from B.C. Hydro, electrical load profiles detailing the annual electricity consumption in fifteen-minute intervals were published by Good et al. (2004). Good et al. (2004) selected the load profile that most closely represented the average load profile for the categories defined below. For more information on how the best-matches were determined, see Good et al. (2004). Houses with complete accounts of electrical consumption were classified into categories based on:

Region:

- Lower Mainland
- Northern
- Southern Interior
- Vancouver Island

Annual Electricity Consumption:

- 0 9,999 kWh
- 10,000 19,999kWh
- 20,000 30,000 kWh

House Size:

- $0 1499 \text{ ft}^2$
- $1500 2499 \text{ ft}^2$
- $2500 4500 \text{ ft}^2$

Occupancy:

• 1

44

- 2
- 3
- 4

Primary Space Heating Fuel Type:

- Natural gas
- Electricity
- Oil

For the categories defined above, the corresponding best-match accounts are listed in Table 6.1.

Category	Grouping	Best-Match Account
	Lower Mainland	2002529 (1997-98)
Pagion	Northern	3898678 (1999-00)
Region	Southern Interior	2004741 (2000-01)
	Vancouver Island	2005521 (1996-97)
	0 to 9,999 kWh	3091971 (1996-97)
Annual Electricity Consumption	10,000 to 19,999 kWh	2005201 (1997-98)
	20,000 to 30,000 kWh	2005521 (2000-01)
	0 to 1,499 ft^2	3091971 (1996-97)
House Size	1,500 to 2,499 ft ²	2005521 (2000-01)
	$2,500 \text{ to } 4,500 \text{ ft}^2$	2006040 (2000-01)
	One	2005521 (2000-01)
Number of Occupants	Two	2983460 (1996-97)
Number of Occupants	Three	2004741 (1996-97)
	Four	2006040 (2000-01)
	Natural Gas	2004741 (2000-01)
Primary Space Heating Fuel Type	Electricity	2005521 (2000-01)
	Oil	3091971 (1996-97)

Table 6.1: Best Match Load Profiles (Good et al., 2004)

The details of each test case house, namely the region, annual electricity consumption, house size, number of occupants and the primary space heating fuel were used to determine which of the best-match files were to be used in generating the specific load profile. For example, test case house 1 is in British Columbia, has an annual electricity consumption of 10,000 to 19,999 kWh, is between 0 to 1,499 ft², has three occupants and uses natural gas as the space heating fuel. The 'best-match' accounts, as listed in Table 6.1, corresponding to the above categories were used to generate the load profile for test case house 1. Specifically, the data for each of the five categories was normalized and all five normalized profiles were averaged. The resulting normalized average load profile was used to generate the absolute load profile specific to test case house 1.

Each entry in each of the five data sets was normalized using Equation 6.1:

$$X_{iN} = X_i \times \frac{(4 \times 8760)}{\sum X_i}$$
[6.1]

Where:

 X_{iN} = normalized data point

 $X_i = data point$

 $\Sigma Xi = sum of data points$

 (4×8760) = the total number of data points - 4 data points per hour, 24 hours daily, 365 days per year.

Once all of the data sets were normalized, they were averaged to give the normalized average load profile for the test case house.

In order to generate an absolute load profile from the normalized load profile, an estimate of the annual electricity consumption for the test case house had to be determined. Aydinalp (2002) used Neural Networks (NN) as well as a Conditional Demand Analysis (CDA) model to estimate the end-use energy consumption of Canadian single-family

households, specifically for the entries in the SHEU database. Neural Networks are simplified mathematical models of biological neural networks. They are highly suitable for determining casual relationships amongst a large number of parameters such as seen in the energy consumption patterns in the residential sector (Aydinalp, 2002). The NN model used to determine the electrical demand, specifically the Appliance, Lighting and Cooling (ALC) demand, achieved a high prediction performance ($R^2 = 0.909$) (Aydinalp, 2002). Moreover, the prediction performance of the NN Model was found to be higher than those of the CDA and Engineering Models (Aydinalp, 2002). In addition, the NN model was able to estimate the electricity consumption of individual appliances, to successfully evaluate the differences in end-use and total household electricity consumption based on various categories, and the capability to evaluate the effects of a large number of socio-economic factors (Aydinalp, 2002). Due to the high prediction performance, the estimates determined using the Neural Network model were used to determine the annual electricity consumption for the test case house group. Specifically, the weighted average of the annual electricity consumption for the test case house group using the NN estimates provided in Aydinalp (2002) was determined.

Once the NN estimate of the annual electricity consumption for the test case house was determined, an absolute load profile was generated using Equation 6.2:

$$X_{iAB} = X_{iN} \times \frac{(NN)}{\sum X_{iN}}$$
[6.2]

Where:

 X_{iAB} = absolute data point (kWh)

 X_{iN} = normalized data point

NN = neural network estimate of annual electricity consumption (kWh)

 ΣX_{iN} = sum of normalized data point

Good et al. (2004) reviewed each profile to assess the probability that the house described by the profile uses and air-conditioner in the summer months. The survey conducted by B.C. Hydro specifically asks whether a central or room air-conditioner is in use, the number of units, and the months of operation. Three houses responded affirmatively to the use of A/C during the summer months, namely 2004357, 2004699, 2767818. None of these three accounts were determined to be 'best matches', thus it is safe to assume that the normalized average load profiles do not include the electricity demand due to cooling.

Statistics were done on the SHEU database to determine if any of the test case houses had cooling. It was found that none of the test case houses had air-conditioning; therefore the estimates for annual ALC electrical consumption for each of the SHEU database entries in the test case house group did not include cooling. Neither, the trends of the load profile, nor the overall annual value used to generate absolute load profiles from the normalized profiles include the effect of cooling.

6.3 **Regional Mapping**

Before specific load profiles could be generated for each test case house, the data from B.C. Hydro had to be extrapolated to the rest of the country. Specifically, it had to be determined which region in British Columbia could be used to represent the remaining regions in Canada. To facilitate this extrapolation, the heating degree-day (HDD) for each region was determined and compared to the HDD for each of the four regions in British Columbia. All degree-day data was taken from Environment Canada (2004). Tables 6.2 to 6.5 detail the average degree-day for the Atlantic region, Central region, Prairie region and Western region respectively. Table 6.6 details the HDD for the four regions of British Columbia while Table 6.7 details the comparison between the four regions of Canada and the four regions of British Columbia.

Month	St. John's	Charlottetown	Halifax	Saint John	
January	706	805	743	811	
February	661	730	668	750	
March	636	655	604	636	
April	492	460	421	434	
May	367	277	256	267	
June	215	114	102	125	
July	94	30	25	44	
August	91	35	29	50	
September	187	138	124	160	
October	344	315	301	332	
November	462	471	449	481	
December	624	684	645	705	
Total	4879	4714	4367	4795	
Regional	4688.8				
Average		-1000.0			

 Table 6.2: Heating Degree-Day – Atlantic Region

Table 6.3: Heating Degree-Day – Central Region

Month	Montreal	Toronto	
January	875	753	
February	747	662	
March	628	572	
April	369	353	
May	157	172	
June	43	49	
July	8	9	
August	21	18	
September	117	102	
October	308	283	
November	492	445	
December	753	647	
Total	4518	4065	
Regional Average	4291.5		

Month	Winnipeg	Saskatoon	Calgary
January	1109	1086	835
February	894	876	680
March	746	738	618
April	422	409	401
May	200	208	252
June	68	82	131
July	- 21	36	74
August	41	61	90
September	179	207	218
October	395	420	392
November	698	726	631
December	1004	1002	787
Total	5777 5851 5109		5109
Regional Average	5579		

Table 6.4: Heating Degree-Day – Prairie Region

Table 6.5: Heating Degree-Day – Western Region

Month	Vancouver	Victoria
January	455	440
February	374	372
March	353	358
April	264	277
May	171	192
June	27	112
July	34	59
August	31	59
September	104	123
October	246	255
November	358	359
December	449	435
Total	2866	3041
Regional Average	2953.5	

Month	Lower Mainland	Vancouver Island	Southern Interior	Northern
January	455	440	676	853
February	374	372	540	662
March	353	358	445	566
April	264	277	295	385
May	171	192	172	253
June	27	112	70	143
July	34	59	24	89
August	31	59	30	107
September	104	123	135	237
October	246	255	335	414
November	358	359	498	621
December	449	435	649	801
Total	2866	3041	3869	5131

 Table 6.6: Heating Degree-Day – British Columbia Regions

 Table 6.7: Heating Degree-Day – Comparison

Canadian Region	Regional Average HDD	B.C. Region	Regional Average HDD
Atlantic	4688.8	Northern	5131
Central	4291.5	Southern	3869
Prairies	5579.0	Northern	5131
West	2953.5	Lower	2866

The results of the regional mapping using HDD show that the Atlantic region can best be represented by the Northern region of British Columbia, the Central region by the Southern region of British Columbia, the Prairies by the Northern region of British Columbia, and the West by the Lower Mainland region of British Columbia.

6.4 Load Profile Results

Figure 6.1 shows an average daily electricity load profile for test case house 1 where winter is December to February, spring is March to May, summer is June to August and fall is September to November. The load data for each day in each season was averaged to illustrate the average daily electricity load profile for each season.

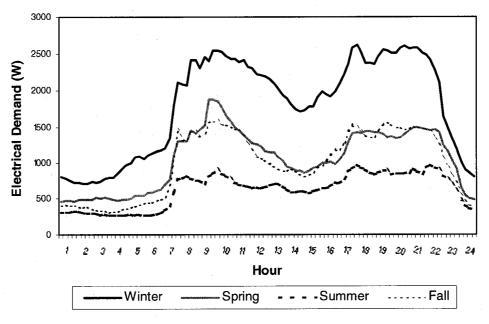


Figure 6.1: Average Daily Electricity Load Profile

Table 6.8 list the annual average electricity consumption for each of the test case houses.

Test Case House	Province	Vintage	Fuel Type	Average Annual Electricity Consumption (kWh)
1	BC	1961-1977	Natural Gas	17301
2	BC	1978 and later	Natural Gas	17355
3	BC	1941-1960	Natural Gas	15149
4	AB	1961-1977	Natural Gas	10510
5	AB	1978 and later	Natural Gas	10654
6	AB	1941-1960	Natural Gas	9534
7	SK	1961-1977	Natural Gas	8517
8	SK	1978 and later	Natural Gas	9569
9	SK	1941-1960	Natural Gas	7903
10	MB	1961-1977	Natural Gas	9697
11	MB	1941-1960	Natural Gas	8276
12	MB	before 1941	Natural Gas	7344
13	ON	1978 and later	Natural Gas	9613
14	ON	before 1941	Natural Gas	7433
15	ON	1941-1960	Natural Gas	8429
16	PQ	1961-1977	Oil	8537
17	PQ	before 1941	Oil	7625
18	PQ	1941-1960	Oil	6078
19	NB	before 1941	Oil	7439
20	NB	1961-1977	Oil	9013
21	NB	1941-1960	Oil	7450
22	NS	1961-1977	Oil	9818
23	NS	before 1941	Oil	7418
24	NS	1941-1960	Oil	8198
25	PEI	1978 and later	Oil	7143
26	PEI	1961-1977	Oil	7527
27	PEI	before 1941	Oil	6774
28	NF	1961-1977	Oil	9390
29	NF	1941-1960	Oil	8382
30	NF	1978 and later	Oil	9109

 Table 6.8: Test Case House Average Annual Appliance and Lighting Electricity

Consumption

Once the normalized load profiles and the average annual consumption for each test case house were determined, the absolute load profiles were generated and converted into the format required by ESP-r and use in all subsequent simulations.

Chapter 7

Modeling in ESP-r

7.1 Test Case House Site and Year of Assessment

Simulations in ESP-r were run for each test case house using weather from two different cities. The simulation cities were chosen based on the following criteria:

- Weather Data Availability: The availability of the weather file in ESP-r governed the selection of simulation cities.
- Selection of Representative city: The two largest cities for which weather files were available in ESP-r were chosen as the simulation cities. There are several large cities for which weather files are not available and in this case, the next largest city with an available weather file was chosen. Table 7.1 lists the most populous cities per province and the associated ESP-r weather file availability.
- Location of the Representative city: While Vancouver and Abbotsford are the most populous cities in British Columbia for which ESP-r weather files are available; they are very near in terms of geographical location. To be able to better represent the entire province, Prince George was selected as the second simulation city after Vancouver. In the same way, North Battleford was chosen over Swift Current as the second simulation city after Regina for the simulation cities in Saskatchewan.
- **Exceptions:** The only ESP-r weather file available for Prince Edward Island is for the city of Charlottetown, thus the Prince Edward Island test case houses were simulated using this weather file only.

			ESP-r
Province	Simulation Cities	Population	Availability
	Vancouver	545,671	Y
	Surrey	347,825	Ν
BC	Burnaby	193,954	N
DC	Richmond	164,345	Ν
	Abbotsford	115,469	Y
	Prince George	72,406	Y
AB	Calgary	878,866	Y
AD	Edmonton	666,104	Y
	Saskatoon	196,811	N
	Regina	178,225	Y
SK	Swift Current	14,821	Y
	North Battleford	13,692	Y
	Estevan	10,242	Y
	Winnipeg	619,544	Y
MB	Brandon	39,716	N
MD	Le Pas	6,030	Y
	Churchill	963	Y
ON	Toronto	2,481,494	Y
UN	Ottawa	774,610	Y
	Montreal	1,039,534	Y
QB	Laval	343,005	N
	Quebec City	169,076	Y
	Saint John	69,661	Y
NB	Moncton	61,046	N
	Fredrection	47,560	Y
NS	Halifax	359,111	Y
CAL	Sydney	26,000	Y
PEI	Charlottetown	32,245	Y
	St. John's	99,192	Y
NF	Goose Bay	7,969	Y
	Stephenville	7,109	Y

 Table 7.1: ESP-r Weather File Availability

The simulation cities chosen for this study according to the criteria outlined above are presented in Table 7.2 along with the latitude and longitude of each city as required by ESP-r.

	Simulation		
Province	Cities	Latitude	Longitude
British Columbia	Vancouver	49°13'	123°06'
British Columoia	Prince George	53°55'	122°47'
Alberta	Calgary	51°05'	114°05'
	Edmonton	53°34'	113°25'
Saskatchewan	Regina	50°30'	104°38'
Saskatchewan	North Battleford	52°46'	108°15'
Manitoba	Winnipeg	49°53'	97°10'
	Le Pas	53°48'	101°15'
Ontario	Toronto	43°40'	79°22'
Olitalio	Ottawa	45°25'	75°43'
Quahaa	Montreal	45°30'	73°35'
Quebec	Quebec	46°50'	71°15'
New Brunswick	Saint John	45°16'	66°03'
INEW Drunswick	Fredericton	45°57'	66°40'
Nova Scotia	Halifax	44°38'	65°35'
INOVA SCOLIA	Sydney	46°10'	60°03'
Prince Edward Island	Charlottetown	46°14'	63°09'
Newfoundland	St. John's	47°34'	52°41'
	Goose Bay	53°19'	60°25'

Table 7.2: Simulation Cities

ESP-r requires a year of assessment to be defined when creating a house model and generates a calendar specifying the weekdays and weekends. The year defined in the weather file was used as the year of assessment to ensure that weekdays and weekends matched as both control strategies and casual gains schedules differ depending on the type of day (i.e.: weekday or weekend).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

7.2 Test Case House Database Description

The ESP-r databases used in the current study can be classified into two categories. For more information on the databases available in ESP-r refer to Haugaard (2003).

7.2.1 ESP-r Default Databases

ESP-r default databases are the standard database files distributed with ESP-r containing all the relevant information required to define a house model. The ESP-r default databases used in this study are listed below (Haugaard, 2003):

- Climate database defines diffuse horizontal radiation, dry bulb temperature, direct normal solar irradiance, wind speed, wind direction, and relative humidity. The climate files were obtained from NRCan and converted from ASCII to binary using ESP-r's Project Manager facility.
- **Pressure distributions database** used to represent the connection between free stream wind velocities and the pressure generated on the outside face of surfaces of the building. The default pressure distributions database is based on a publication from the IEA's Air and Ventilation Centre (Air Infiltration Calculation Techniques An Application Guide) and can be used for buildings of up to three storeys.
- Plant components database- contains plant components (e.g.: pumps, fans, ducts, etc.) used to model a wide range of systems such as ventilation, heating, and cooling systems. Each plant component requires a general component description, the connected volume discretisation scheme and the required thermophysical data.

• Materials database – contains a description of the different classes of materials (e.g.: brick, concrete, wood, etc.) and the materials thermal conductivity, density, specific heat, absorption coefficient, emission value and diffusion resistance factor.

7.2.2 Test Case House Specific Databases

Three of the databases used were specific to the test case house and had to be modified to suit the test case house attributes. The test case house specific databases are listed below (Haugaard, 2003):

- **Construction database** contains information on the composition of different building units such as walls, windows and floor systems. The database describes the thickness, positions and optical properties of each material. There are two different types of constructions, symmetrical and asymmetrical building units. If an asymmetrical construction is to be used as an internal partition (i.e.: the surface between two adjacent zones), it is necessary to make an inverted version of the construction and link it with the original construction. A constructions database was defined for each test case house, as the external wall, foundation and ceiling insulation levels were different for each house.
- Event profiles database the test case house specific event profile database was generated using ESP-r's PRO facility in which the event start and end times and associated sensible and latent casual gains are defined. The determination of occupant casual gains is discussed in detail in Section 7.8.
- Optical properties database contains the optical properties of transparent constructions. The angle dependent data for the direct solar transmission, absorption and reflectance is defined in the optical properties database. A test case

house specific optical properties database was defined for houses that required triple pane windows. Defining and importing the optical properties for triple pane windows is discussed in detail in Sections 7.5.1. The default optical properties database was used for test case houses using single and double pane windows as the optical properties for these windows were available in the default database.

7.3 Zone Geometry, Construction and Attribution Modeling

The first step to creating a house model in ESP-r is to define the zone geometry and associated construction. Each zone, namely the basement, main floor, any additional storeys, and the attic were modeled as separate zones.

7.3.1 Above Grade Zones

The SHEU database defined the size of the house (excluding the basement) in square feet. This was used to determine the dimensions of the house. It was assumed that all of the test case houses were square¹. The total square footage of the house was divided by the number of storeys (excluding the basement) as defined by Equation 7.1.

$$W = \sqrt{\frac{A}{storeys}} = L$$
 [7.1]

Where:

A = area of house as defined by SHEU (ft^2)

W = width of house (ft)

L = length of house (ft)

storeys = the number of storeys excluding the basement

¹ All houses except for one storey, 1750ft houses (test case houses numbers 5 and 8) as there is a limitation in BASESIMP, the algorithm used to model basements. This limitation is discussed in Section 7.3.2.

Table 7.3 details the dimensions used for houses of different sizes and different numbers of storeys.

Number of	$1250 \text{ ft}^2 (116\text{m}^2)$			$1750 \text{ ft}^2 (163 \text{m}^2)$		
Number of Storeys	Width (m)		Main Wall Height (m)	Width (m)	Depth (m)	Main Wall Height (m)
1	10.78	10.78	2.50	13.55	12.00	2.50
1.5	10.78	10.78	3.75	13.55	12.00	3.75
2	7.62	7.62	2.50	9.02	9.02	2.50

 Table 7.3: Test Case House Dimensions²

All wall heights were 2.5 metres, with the exception of 1.5 storey test case houses. In this case, the basement was modeled with a 2.5 metre wall height, and the main floor with a wall height of 3.75 metres.

Figure 7.1 shows a typical one-storey house model in ESP-r.

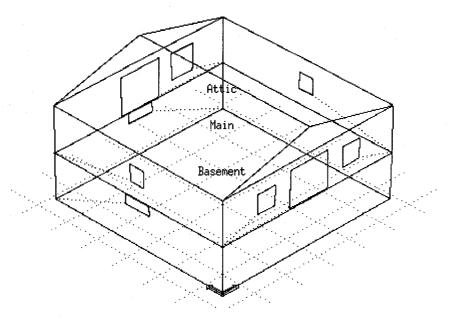
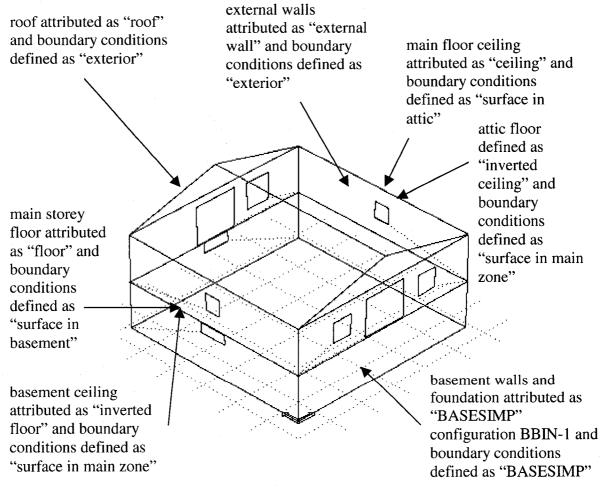
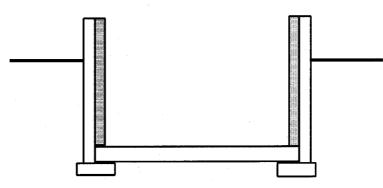



Figure 7.1: Typical ESP-r House Model

² All dimensions are interior dimensions

Once the geometry of the zones was defined, all surface had to be attributed by assigning the construction and boundary conditions. Specifically, the construction of each wall, floor, ceiling and roof had to be defined and the associated boundary conditions defined. The details of each of theses constructions can be found in the Multi-Layer Construction (MLC) database found in Appendix D. The same attributions were used for each test case house model, while the insulation thickness was varied to achieve the desired overall RSI value for the component. Figure 7.2 illustrates the attribution (construction and boundary conditions) scheme used for each scheme. The details on window and door construction and attribution are discussed in Sections 7.5 and 7.6 respectively.



61

7.3.2 Basement Modeling

Heat losses from foundations are poorly considered in many whole-building energy programs commonly used to model houses (Beausoleil-Morrison and Mitalas, 1997). Foundation heat losses contribute considerably to residential heating loads, as high as 24% in energy efficient homes, and even higher in homes with conventional construction (Beausoleil-Morrison and Mitalas, 1997). Modeling foundations in ESP-r is improved by the use of BASESIMP. BASESIMP is a regression-based algorithm which expresses both above-grade and below-grade time-dependent heat losses (Beausoleil-Morrison and Mitalas, 1997). It calculates heat loss as a function of the foundation's thermal and geometrical properties such as insulation resistance, height, depth, width, length and site conditions, namely soil conductivity, water-table depth, and weather (Beausoleil-Morrison and Mitalas, 1997).

The test case houses were modeled using the BASESIMP configuration BBIN-1 as illustrated in Figure 7.3

This configuration is defined as having wood walls and a concrete floor with the interior walls insulated over the full height. The first story is non-brick veneer or bricks thermally broken from the basement's concrete walls (Beausoleil-Morrison, 1996). The below

grade portion is assumed to be 1.9 metres while the above grade portion is 0.6 metres. This configuration was used for all test case house models.

As mentioned above, the BASESIMP model requires data related to the site conditions as well as the geometry and construction of the basement. Details on temperature data were taken from BASECALCTM. BASECALCTM is a computationally intensive program that performs a series of two-dimensional finite-element analyses for each foundation (Beausoleil-Morrison and Mitalas, 1997). Two steady-state and one transient twodimensional finite-element calculations are performed; BASECALCTM then accounts for three-dimensional effects around corners and processes the finite-element results with weather data to predict energy and heat losses (BASECALC, 2006). The annually averaged soil temperature and the amplitude of ground-temperature's annual sine wave for different locations are included in the software package (BASECALC, 2006). Table 7.4 details the annual averaged soil temperature and the amplitude of the groundtemperature's annual sine wave for each simulation city as required by BASESIMP. The soil composition was assumed to be normal for all simulation cities (as defined by BASECALCTM), yielding a soil conductivity of 0.85 W/m² K. In addition, the water table depth was assumed to be normal for all simulation cities (as defined by BASECALCTM) yielding a value of 8 metres. The phase lag of the ground-temperature's annual sine wave was taken from ESP-r's CCHT³ house model and was assumed to be 0.3825 for all simulation cities.

³ The CCHT house represents a typical modern energy efficiency Canadian house (Purdy and Beausoleil-Morrison, 2001).

City	Annually averaged soil temperature (°C)	Amplitude of ground- temperature's annual sine wave (°C)			
Vancouver	11.3	9.02			
Prince George	6.2	9.56			
Calgary	6.4	10.56			
Edmonton	5.2	12.56			
Regina	4.8	14.04			
North Battleford	5.9	14.05			
Winnipeg	6.1	15.15			
Le Pas	2.7	12.41			
Toronto	11.1	13.37			
Ottawa	8.9	14.2			
Montreal	6.4	14.42			
Quebec	7.4	13.07			
Saint John	7.7	10.5			
Fredericton	7.7	12.52			
Halifax	8.5	11.71			
Sydney	8.4	10.42			
Charlottetown	7.5	11.46			
St. John's	6.7	8.01			
Goose Bay	4.9	10.38			

Table 7.4: Soil Properties

Once the foundation and basement walls were attributed as BASESIMP, the percentage of heat loss through each surface had to be defined. This was achieved by taking a ratio between the surface area and the total surface area as defined in Equation 7.2.

$$\% surface_i = \frac{SA_i}{SA_{Total}}$$
[7.2]

Where:

%surface_i = percentage of heat loss through surface i (%)

 SA_i = surface area of surface i (m²)

 SA_{Total} = total surface area of basement (m²)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

There is a limitation in BASESIMP in which the width of the foundation cannot be greater than 12 meters. Test case houses 5 and 8 have a foundation a length and width equal to 12.75 meters. In the case of these two test case house models, the length of foundation was increased to 13.55 meters and width was decreased to 12 meters. This change in dimensions kept the square footage of the house the same while effectively addressing the aforementioned limitation.

7.4 Attic Modeling

The attic was modeled as a separate zone in each of the test case house models. Equation 7.3 was used to determine the height of the attic for each test case house (Fung, 2003).

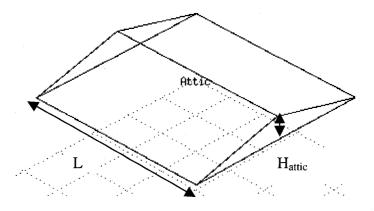


Figure 7.4: Attic Zone

$$H_{Attic} = 0.125 \times L$$
 [7.3]

Where:

 $H_{Attic} = attic height (m)$

L = length of house (m)

7.5 Windows

The data required for modeling doors and windows in ESP-r was derived from both the SHEU database and the NHS database. The SHEU database details the number and type (i.e.: single pane, double pane or triple pane) of windows, and the NHS database details the distribution of the windows. The SHEU database distinguishes between 'over-sized' windows and 'regular' windows, while the NHS database gives the dimensions of 'regular' and 'large' windows. Table 7.5 details the window sizes used.

Table 7.5: Window Sizes (NRCan, 1997)

Window Type	Length x Width Dimensions (m)	Glazed Area (m ²)
Large	1.09 x 1.09	1.188
Regular	0.89 x 0.89	0.79

ESP-r has a limitation on the number of surfaces that can be inserted into one surface. For this reason, each window could not be modeled separately. Modeling conventions were determined in order to facilitate window modeling and are described below:

- All 'large' windows are evenly distributed between the front and back of the main storey. In the case of an odd number of 'large' windows, the majority were placed on the front of the main storey
- Windows with higher number of panes go on the front and back of the main storey
- Windows with higher number of panes go on the main storey
- Single pane windows go in the basement
- If the number of storeys is greater than one, the windows are evenly distributed between the main and remaining storeys

Once the window sizes, types and orientation were determined, the glazed area was combined to avoid having too many surfaces within the wall surface. Therefore, each wall has up to two⁴ windows, which represent the total number of windows on that surface. Details on the number of windows, the associated type and orientation of each window for all test case houses can be found in the test case house descriptions in Appendix C.

Neither the SHEU nor NHS databases provided information regarding the type of glass used, therefore it was assumed that all windows were made of plate glass.

7.5.1 Multi-layer Construction of Triple Pane Windows

The current ESP-r MLC database does not contain a definition for a triple pane window and for the purpose of this study, a triple pane window construction had to be defined. In addition, ESP-r requires that each window construction have a distinct set of optical properties. For this reason, the optical properties for a triple pane window were determined using Windows 4, a publicly available freeware program for window and fenestration design. A triple pane window was built using Windows 4 the optical properties were imported into ESP-r.

7.6 Doors

The SHUE database details the number of wood doors and metal doors, but does not provide information regarding the orientation or RSI values. As with the windows, conventions were assumed when modeling the doors and are explained below:

⁴ In the case where there were two types of windows (i.e.: double pane and triple pane) on one wall surface, they could not be combined into one representative glazed area, therefore two representative windows were needed. In the case where all windows were of the same type (i.e.: double pane), only one representative window was required.

- All wood doors were put on the front of the main storey
- All metal doors were put on the back of the main storey
- In the case of an odd number of doors, the majority were put on the back of the main storey

The RSI values for the doors were taken from Fung (2003) and are detailed in Table 7.6.

Region	Door RSI
West	0.51
Prairies	0.63
Central	0.50
Atlantic	0.50

Table 7.6: Door RSI Values

7.7 Infiltration

The Alberta Infiltration Model (AIM-2) is used to account for airflows and infiltration in ESP-r. Details on the AIM-2 model can be found in (Walker and Wilson, 1990).

In defining the AIM-2 inputs for the test case houses, the following assumptions were made:

- Terrain for buildings was assumed to be 'City Centre'
- Wall shielding was assumed to be 'Heavy'
- Weather station anemometer height was 10 metres
- All zones, including attic received infiltration

The height of the building eaves, a required AIM-2 input was calculated using Equation 7.4 (NRCan, 1996).

$$H_{eave} = 2.5 \times (storeys) + 0.5$$
[7.4]

Where:

 H_{eave} = height of building eaves (m) storeys = the number of storeys

The flue diameters for the furnace and DHW system, based on fuel type are detailed in Table 7.7.

System	Fuel Type	Diameter
	Tuer Type	(mm)
Furnace	Natural Gas	152
Fumace	Oil	160
DHW	Natural Gas	100
DHW	Oil	150

Table 7.7: Flue Diameters (Fung, 2003)

7.8 Casual Gains

To quantify the casual gains due to occupancy, a schedule of activities and associated latent and sensible gains had to be determined. The occupancy patterns used in this study were based on the CCHT Simulated Occupancy Schedule (CCHT, 2002). To avoid overestimating the occupancy casual gains, a schedule was set for the first occupant and a modified schedule was set for the remaining occupants. Activities with high associated metabolic rates such as cooking and cleaning are rarely performed by all occupants at the same time therefore it was assumed that one occupant performed these tasks while the remaining occupants performed more moderate activities.

The ratio between sensible and latent heat gains was determined by examining the ratio based on activity level. Table 7.8 details the sensible and latent heat gains based on activity (ASHRAE, 1992).

Degree of Activity	Sensible (W)	Latent (W)	Ratio
Seated at theatre - matinee	66	31	2.13
Seated at theatre - evening	72	31	2.32
Seated, very light work	72	45	1.60
Moderately active office work	73	59	1.24
Standing, light work; walking	73	59	1.24
Walking; standing	73	73	1.00
Sedentary work	81	81	1.00

Table 7.8: Sensible and Latent Gains by Activity

Tables 7.9 and 7.10 detail the weekday and weekend activity schedule, the associated metabolic rate and the sensible to latent ratio for the first occupant. The metabolic rates associated with each activity were taken from ASHRAE (1997).

Time	Location	Activity	Metabolic Rate (W/m ²)	Sensible:Latent Ratio
0:00	Home	Sleeping	40.0	2.32
7:00	Home	Cooking	105.0	1.00
8:00	Away	N/A	0.0	N/A
17:00	Home	House Cleaning	157.5	1.00
18:00	Home	Cooking	105.0	1.00
19:00	Home	Moderate Activity	77.0	1.24
22:00	Home	Resting	45.0	2.13
23:00	Home	Sleeping	40.0	2.32

Table 7.9: Weekday Activity Schedule – First Occupant

Table 7.10: Weekend Activity Schedule – First Occupant

Time	Location	Activity	Metabolic Rate (W/m ²)	Sensible:Latent Ratio
0:00	Home	Sleeping	40.0	2.32
7:15	Home	Light Activity	60.0	1.60
23:00	Home	Sleeping	40.0	2.32

Tables 7.11 and 7.12 detail the weekday and weekend activity schedule, the associated metabolic rate and the sensible to latent ratio for remaining occupants.

Time	Location	Activity	Metabolic Rate (W/m ²)	Sensible:Latent Ratio
0:00	Home	Sleeping	40.0	2.32
7:00	Home	Light Activity	60.0	1.60
8:00	Away	N/A	0.0	N/A
17:00	Home	Moderate Activity	77.0	1.24
22:00	Home	Resting	45.0	2.13
23:00	Home	Sleeping	40.0	2.32

 Table 7.11: Weekday Activity Schedule – Remaining Occupants

 Table 7.12: Weekend Activity Schedule – Remaining Occupants

Time	Location	Activity	Metabolic Rate (W/m ²)	Sensible:Latent Ratio
0:00	Home	Sleeping	40.0	2.32
7:15	Home	Light Activity	60.0	1.60
23:00	Home	Sleeping	40.0	2.32

The total metabolic rate for all occupants was calculated by multiplying the weighted average of metabolic rate by the number of occupants according to Equation 7.5.

Total Metabolic Rate =
$$\left(\frac{MET_1 + (MET_r \times n)}{1+n}\right) \times n$$
 [7.5]

Where:

 MET_1 = metabolic rate of first occupant (W/m²)

 MET_r = metabolic rate of remaining occupants (W/m²)

n = number of occupants

The total heat gain in watts was calculated by multiplying the total metabolic rate by the average surface area of a human, 1.8 m^2 (ASHRAE, 1997).

The average sensible to latent ratio for all occupants was calculated using a weighted average between the first and remaining occupants according to Equation 7.6.

Average Sensible to Latent Ratio =
$$\frac{(S:L)_1 + [(S:L)_r \times n]}{1+n}$$
[7.6]

Where:

 $(S:L)_1$ = sensible to latent ratio for first occupant

 $(S:L)_r$ = sensible to latent ratio for remaining occupants

n = number of occupants

The amount of sensible and latent heat gains in watts was determined by applying the sensible to latent ratio to the total watts.

Tables 7.13 - 7.18 present the weekday and weekend sensible and latent heat gains for two, three and four occupants.

Time	Duration	Total Metabolic Rate (W/m ²)	Weighted Average of S:L Ratio	Total Watts	Sensible (W)	Latent (W)
0:00	7h	80.0	2.32	144.0	100.7	43.3
7:00	1h	165.0	1.40	297.0	173.3	123.8
8:00	9h	0.0	N/A	0.0	0.0	0.0
17:00	1h	234.5	1.16	422.1	226.5	195.6
18:00	1h	182.0	1.16	327.6	175.8	151.8
19:00	3h	154.0	1.24	277.2	153.3	123.9
22:00	1h	90.0	2.13	162.0	110.2	51.8
23:00	1h	80.0	2.32	144.0	100.7	43.3

Table 7.13: Weekday Sensible and Latent Gains - Two Occupants

 Table 7.14: Weekend Sensible and Latent Gains – Two Occupants

Time	Duration	Total Metabolic Rate (W/m ²)	Weighted Average of S:L Ratio	Total Watts	Sensible (W)	Latent (W)
0:00	7h	80.0	2.32	144.0	100.7	43.3
7:00	16h	120.0	1.60	216.0	132.9	83.1
23:00	1h	80.0	2.32	144.0	100.7	43.3

72

Time	Duration	Total Metabolic Rate (W/m ²)	Weighted Average of S:L Ratio	Total Watts	Sensible (W)	Latent (W)
0:00	7h	120.0	2.32	216.0	151.0	65.0
7:00	1h	225.0	1.45	405.0	239.7	165.3
8:00	9h	0.0	N/A	0.0	0.0	0.0
17:00	1h	311.5	1.18	560.7	303.3	257.4
18:00	1h	259.0	1.18	466.2	252.2	214.1
19:00	3h	231.0	1.24	415.8	230.0	185.9
22:00	1h	135.0	2.13	243.0	165.3	77.7
23:00	1h	120.0	2.32	216.0	151.0	65.0

Table 7.15: Weekday Sensible and Latent Gains – Three Occupants

 Table 7.16: Weekend Sensible and Latent Gains – Three Occupants

Time	Duration	Total Metabolic Rate (W/m ²)	Weighted Average of S:L Ratio	Total Watts	Sensible (W)	Latent (W)
0:00	7h	120.0	2.32	216.0	151.0	65.0
7:00	16h	180.0	1.60	324.0	199.4	124.6
23:00	1h	120.0	2.32	216.0	151.0	65.0

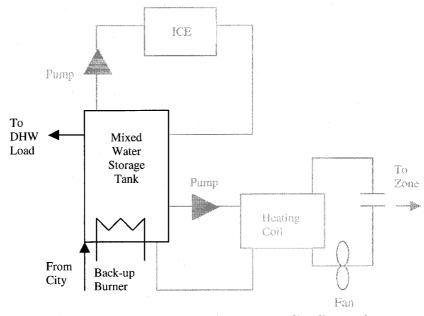
Table 7.17: Weekday Sensible and Latent Gains - Four Occupants

Time	Duration	Total Metabolic Rate (W/m ²)	Weighted Average of S:L Ratio	Total Watts	Sensible (W)	Latent (W)
0:00	7h	160.0	2.32	288.0	201.3	86.7
7:00	1h	285.0	1.48	513.0	306.2	206.9
8:00	9h	0.0	N/A	0.0	0.0	0.0
17:00	1h	388.5	1.19	699.3	380.0	319.3
18:00	1h	336.0	1.19	604.8	328.6	276.2
19:00	3h	308.0	1.24	554.4	306.6	247.8
22:00	1h	180.0	2.13	324.0	220.5	103.6
23:00	1h	160.0	2.32	288.0	201.3	86.7

Time	Duration	Total Metabolic Rate (W/m ²)	Weighted Average of S:L Ratio	Total Watts	Sensible (W)	Latent (W)
0:00	7h	160.0	2.32	288.0	201.3	86.7
7:00	16h	240.0	1.60	432.0	265.9	166.2
23:00	1h	160.0	2.32	288.0	201.3	86.6

 Table 7.18: Weekend Sensible and Latent Gains – Four Occupants

Casual gains due to the consumption of electricity were included by manually adding 'type 5' casual gains to each test case house operation file as required by ESP-r.

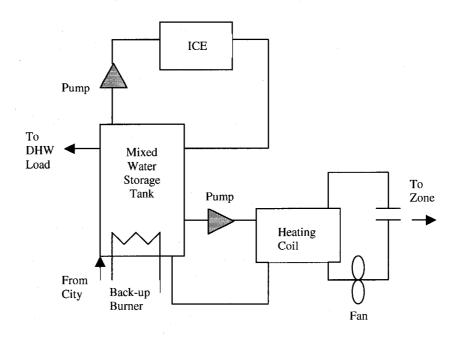

7.9 Plant Modeling

7.9.1 Base Case Plant Model

In the base case, the test case houses were modeled using idealized HVAC. Idealized HVAC models can be coupled to the idealized controllers to estimate system performance. Idealized controllers look at the space heating and cooling loads required on each time step and perform the necessary heat/moisture addition/extraction. Idealized HVAC models do not actually simulate system response, but instead look at the heat injection/extraction calculated by the idealized controls and estimate the system's fuel use based on this operational pattern (Ferguson, 2006). Furnace type and capacity, fuel type, efficiency, number of zones served, and pilot and fan power were defined in the HVAC file. Specifically, the furnace type, efficiency, and fuel for each test case house, as listed in the test case house descriptions in Appendix C, were defined in this HVAC file.

While it was possible to use the idealized DHW model in the base case, it was desirable to ensure that the base and ICE cases remained as comparable as possible, thus the 3-node DHW tank model was used in both the base and ICE scenarios and is illustrated in Figure 7.5. The DHW tank size and efficiency for each test case house, as listed in the

test case house descriptions in Appendix C, were defined as a model inputs for the DHW model.


Figure 7.5: Base Case Plant Configuration

In the base case, the HVAC loads were met by idealized HVAC therefore ICE was not activated. In addition, the pumps between the DHW storage tank and ICE and the DHW tank and the heating coil were not activated. In this way, the DHW model met the DHW load while idealized HVAC met the space-heating load. While information on the DHW efficiency was available in the EGH database, there was no information available on the DHW heat injector rate – a required user input for the DHW model. Appendix E details how the heat injector rates were determined.

A description of each of the modeling components is given in the following section.

7.9.2 Cogeneration Plant Model

The plant configuration used in the ICE based cogeneration simulations is illustrated in Figure 7.6.

Figure 7.6: ICE Based Cogeneration Case Plant Configuration

In the cogeneration case, the thermal energy from the ICE based cogeneration system was transferred to the storage tank. The space heating requirements were met by the heating coil, which was fed by the hot water storage tank. The back up burner on the hot water storage tank ensured that the temperature in the tank did not go below the required temperature. The control aspects of the cogeneration plant model are discussed in Section 7.10.2.

The plant used in both the base and ICE cases was built using the following components from ESP-r's plant component database:

ICE cogeneration system: The ICE cogeneration system was modeled using ESP-r's 3node ICE model, which requires one water connection. The ICE model used in this study is a simplified parametric model based on performance data quoted by manufacturers of commercially available reciprocating ICEs with rated output in the 1 - 10 kW range suitable for residential applications (Onovwiona et al., 2007). The model assumes a constant overall efficiency of approximately 80% (based on LHV). Based on this assumption and the performance data from a 6 kW Cummins gas engine, the variation of the specific fuel consumption (SFC), electrical efficiency, and heat to power ratio (HPR) as a function of part load ratio are illustrated in Figures 7.7 - 7.9.

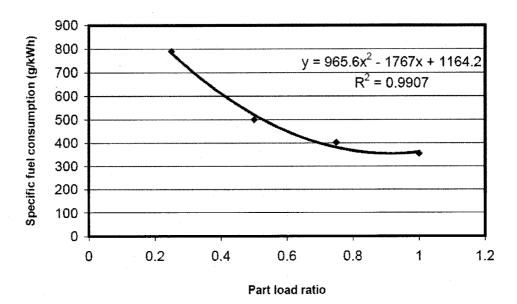


Figure 7.7: Performance Curve of 6 kW Cummins Gas Engine, SFC versus Part Load Ratio (Onovwiona, 2005)

77

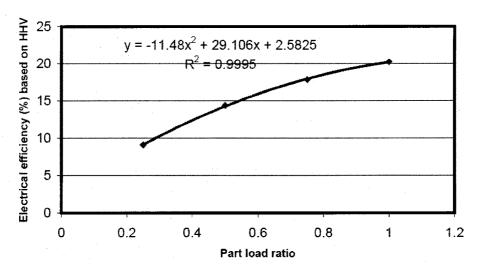


Figure 7.8: Performance Curve of 6 kW Cummins Gas Engine, Electrical Efficiency versus Part Load Ratio (Onovwiona, 2005)

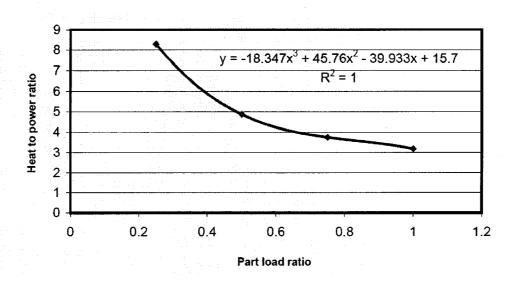


Figure 7.9: Performance Curve of 6 kW Cummins Gas Engine, Heat to Power Ratio versus Part Load Ratio (Onovwiona, 2005)

For a comprehensive review of the ICE model, refer to Onovwiona (2005).

The fuel used to run the ICE based cogeneration system was natural gas or propane, depending on the fuel used in the base case simulations. For test case houses 1-15, the

fuel used ICE based cogeneration cases was natural gas. For test case houses 16-30, the fuel used in the ICE based cogeneration cases was propane.

3-node hot water tank: The hot water tank was modeled using ESP-r's 3-node hot water tank with a back-up burner. This model requires two water connections, one to service the DHW load and one to service the air-heating coil, and one air connection to provide the required combustion air. There are two options in defining the DHW draw profile, user-defined or a draw profile based on the CSA f379.1-88 Solar Domestic Hot Water System. The CSA f379.1-88 Solar Domestic Hot Water System was assumed for this study and the draw profile is illustrated in Figure 7.10 (Lopez, 2001).

The DHW demand in litres is defined by Equation 7.7 (Lopez, 2001).

$$W_{daily} = 85 + (35 \times n)$$
 [7.7]

Where:

 $W_{daily} = daily water draw (litres)$

n = number of occupants

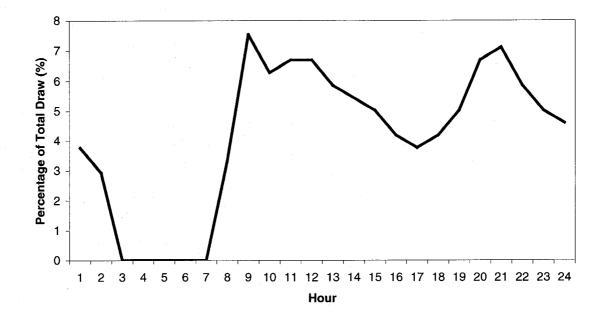


Figure 7.10: DHW Draw Profile

For all ICE based cogeneration simulations, the backup burner efficiency was assumed to be 80% (based on HHV) and the UA value for the tank was assumed to be 1.175 W/K.

Pumps: The pumps were modeled using ESP-r's single-node wet central heating (WCH) pump. This model allows for a single water connection, and calculates the temperature rise that occurs in the pump. The flow rate for the ICE pump was $1.26 \times 10^{-4} \text{ m}^3$ /s and the flow rate for the heating coil pump was $3.0 \times 10^{-4} \text{ m}^3$ /s and the rated power for each pump was 150W.

Air Heating Coil: The air-heating coil was modeled using ESP-r's 3-node air heating coil model. This model allows for one water connection and one air connection.

Fan: The fan was modeled using ESP-r's single-node centrifugal fan model. This model allows for a single air connection and calculated the temperature of the air leaving the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

fan. The rated power for the fan was 200W and the fan flow rate was varied between 0.1 -0.5 m^3 /s depending on the test case house specific space heating requirement.

Pipes: The pipes were modeled using ESP-r's wet central heating (WCH) pipes. This model has one water connection and calculates the temperature of the water leaving the pipe.

Air Duct: The air duct was modeled using ESP-r's single-node air duct model, which has one air connection and calculates the temperature of the air leaving the air duct.

7.10 Plant Control

7.10.1 Base Case Plant Control

As mentioned in Section 7.9.1, the base case was modeled using idealized HVAC. Idealized HVAC requires the user to input the temperature at which the zone is to be maintained. All set-point temperatures are detailed in the test case houses descriptions, which can be found in Appendix C.

The hot water storage tank was controlled by sensing the temperature of the water inside the tank. The DHW supply temperature was 55°C and a six-degree temperature band was used, thus the lower set point was 52°C and the upper set point was 58°C. If the temperature in the tank fell below 52°C, the back-up burner would be activated until the temperature in the tank reached 58°C, at which point it would shut off. To ensure that the water temperature stayed within range of the required DHW temperature, and to prevent the backup burner from repeatedly cycling on and off, a temperature band of six degrees was used as opposed to a smaller temperature band.

7.10.2 Cogeneration Plant Control

In the ICE case, control loops were imposed on some of the plant network components, namely the hot water storage tank, the supply fan and the pump between the hot water tank and the fan coil. A control loop consists of a sensor, an actuator, and an associated control law.

The plant network was controlled using three control loops:

- 1. Hot water tank thermostat control: The control loop used to control the hot water storage tank sensed the temperature of the water inside the tank and actuated the back-up burner if required. As with the base case, a six-degree temperature band around the required DHW temperature of 55°C was used and the loop was implemented using an on-off control law. In addition, temperature limits were imposed for the tank's heat dump facility, which is used to ensure that the water in the tank does not boil. The heat dump facility was activated if the temperature in the tank reached 85°C and deactivated when the temperature in the tank fell to 80°C.
- 2. Fan Control: The control loop used to control the fan sensed the dry-bulb temperature in the main zone and actuated the fan and was implemented using onoff control. Unlike the idealized HVAC model, a temperature band was required instead of a temperature set point. The temperature band used was a 1°C temperature band around the desired set point temperature as defined in the test case house descriptions is Appendix C. In both the base and cogeneration cases, heat was injected into the main zone and an inter-zone ventilation rate of 2.616 ACH was imposed to move heat the remaining zone(s). Figure 7.11 presents the main zone and basement zone temperatures for a typical winter day in both the base and cogeneration simulations for test case house 4 simulated in Calgary.

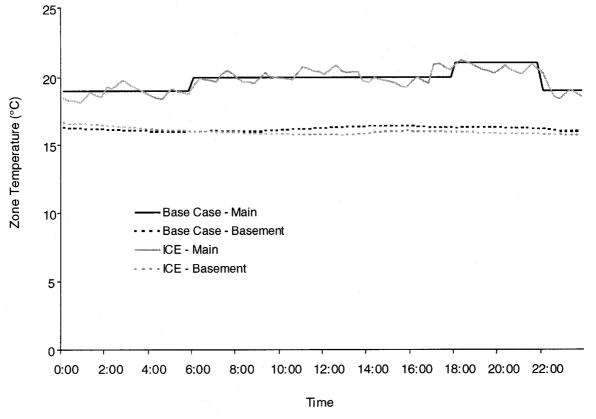


Figure 7.11: Base and Cogeneration Case – Zone Temperatures

3. **Heating-Coil Pump Control**: The control loop used to control the heating-coil pump sensed the dry-bulb temperature in the main zone and actuated the heating-coil pump and was implemented using on-off control. As with the fan control, a 1°C temperature band around the desired set point temperature as defined in the test case house descriptions was used.

The control loop used in controlling the ICE unit was modeled within the ICE model itself, and no external control was required. The ICE unit operated by following the electrical load of the building, called electricity priority control.

Chapter 8

Simulation and Sensitivity Analysis

All simulations were run using fifteen-minute time steps for both the building and plant domains. Using fifteen-minute time steps allowed for a good sub-hourly representation of building loads and system response. Since all results in this study were analysed on an annual basis, using five-minute or one-minute time steps was not necessary. In addition, to ensure that the initial building and plant conditions did not affect the results, a start-up time of three days was specified for all simulations.

8.1 **Furnace Sizing Simulations**

In order to determine the appropriate furnace capacity, annual simulations using fifteenminute time steps were run with each test case house using a furnace of 50 kW capacity. The results of these simulations were used to determine the capacity of the furnace for each test case house. Specifically, the furnace output was analyzed and the highest value identified. The maximum required furnace output was multiplied by a safety factor of 1.2 and rounded to the nearest kilowatt, and this value became the furnace capacity for the test case house. The results of the furnace sizing simulations as well as the furnace capacity used are detailed in Table 8.1.

		T
Test Case House	Maximum Space Heating Demand (W)	Furnace Capacity (kW)
A1-Prince George	21056	25
A1-Vancouver	10565	13
A2-Prince George	13287	16
A2-Vancouver	6756	8
A3-Prince George	20323	24
A3-Vancouver	8581	10
A4-Calgary	12386	15
A4-Edmonton	14496	17
A5-Calgary	13231	. 16
A5-Edmonton	15562	19
A6-Calgary	13560	16
A6-Edmonton	15784	19
A7-Nprth Battleford	14549	18
A7-Regina	14299	17
A8-North Battleford	14202	17
A8-Regina	13725	17
A9-North Battleford	18635	22
A9-Regina	17441	21
A10-Le Pas	15279	18
A10-Winnipeg	13592	16
A11-Le Pas	19610	24
A11-Winnipeg	17309	21
A12-Le Pas	23463	28
A12-Winnipeg	20711	25
A13-Ottawa	8377	10
A13-Toronto	7512	9
A14-Ottawa	12494	15
A14-Toronto	10402	13
A15-Ottawa	15731	19
A15-Toronto	13096	16
A16-Montreal	10259	12
A16-Quebec	12788	15

 Table 8.1: Test Case House Furnace Capacity

Test Case House	Maximum Space Heating Demand (W)	Furnace Capacity (kW)
A17-Montreal	12459	15
A17-Quebec	12542	15
A18-Montreal	16980	20
A18-Quebec	17371	21
A19-Fredericton	33343	40
A19-Saint John	29083	35
A20-Fredericton	16420	20
A20-Saint John	14270	17
A21-Fredericton	26285	32
A21-Saint John	24042	29
A22-Halifax	12255	15
A22-Sydney	11312	14
A23-Halifax	24508	30
A23-Sydney	22521	27
A24-Halifax	20222	24
A24-Sydney	18633	22
A25-Prince Edward Island	9369	11
A26-Prince Edward Island	11336	14
A27-Prince Edward Island	24881	30
A28-Goose Bay	15725	19
A28-St. John's	11878	14
A29-Goose Bay	16817	20
A29-St. John's	12636	15
A30-Goose Bay	13393	16
A30-St. John's	10454	13

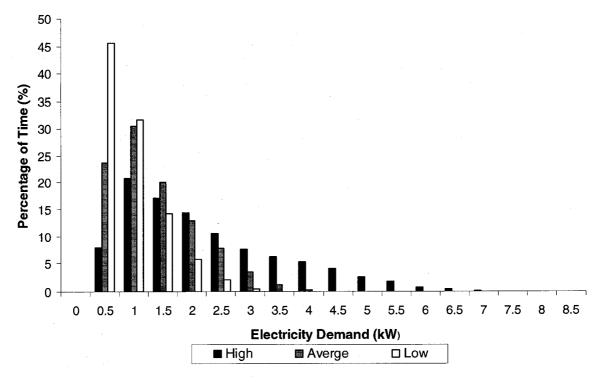
Table 8.1 Continued: Test Case House Furnace Capacity

It is understood that not all of the above furnace capacities are commercially available, however since the databases consulted in this work did not give any indication of the space heating equipment capacity, and because the intent was to model an ideal base case against which the ICE based cogeneration simulation results could be compared, the above methodology was used to estimate the space heating equipment capacity.

8.2 Base Case Simulations

Once the appropriate furnace size was determined, the base case simulations were run. The test case houses used in the base case simulations were modeled with conventional technologies (i.e.: natural gas/oil fired furnace and natural gas/oil/electricity based DHW system) as explained in Section 7.9.1. The test case house specific system specifications are listed in the test case house descriptions presented in Appendix C. Annual simulations using fifteen-minute time steps were run for each test case house, in their corresponding simulation cities. The results of the base case simulations were used as the basis of comparison for the subsequent ICE based cogeneration simulations. The annual simulation results for the base case models are presented in Chapter 9.

8.3 Cogeneration Simulations


The conventional energy systems used in the base case simulations were replaced by an ICE based cogeneration system and annual simulations using fifteen-minute time steps were run. The cogeneration system parameters used in the cogeneration simulations (i.e.: ICE and thermal storage capacities) are discussed in Section 8.3.1.

8.3.1 Sensitivity Analysis

To quantify the effect of varying ICE system parameters on the system performance in terms of cost and GHG emissions, annual simulations were run with four different ICE based cogeneration system configurations. Two ICE sizes and two storage tank sizes were used in the cogeneration simulations.

The ICE based cogeneration system used in this study is controlled by following the electrical demand of the house. To determine the size of ICE used in simulations, a frequency plot was generated illustrating the levels of electricity demand. Figure 8.1 illustrates the frequency distribution of the electrical demand of three test case houses.

The test case houses with the highest and lowest electrical demand in the base case simulations are plotted, as well as a test case house with an average total electrical demand.

Figure 8.1: Electricity Demand Frequency Plot

It is desirable to minimize running the ICE at part load as the electrical efficiency decreases as the part load ratio decreases. In addition, according to Figure 8.1, the majority of the time the houses' electrical demand falls between 500 W to 2.0 kW (i.e.: 60% for high electrical demand, 87 % for average electrical demand, and 97% for low electrical demand), thus the ICE sizes used in simulations were 1.0 kW and 2.0 kW.

Among the literature currently available regarding the feasibility of ICE based cogeneration in residential applications, there is no indication of the sizes of thermal storage used. Onovwiona (2005) simulated a 2.0 kW, 3.5 kW and 6.0 kW ICE based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

cogeneration system with associated tank sizes of 300 kg and 600 kg. As the ICE capacities in the current work are 1.0 kW and 2.0 kW, it was decided that 300 kg and 450 kg tanks were to be used in simulation. In addition, both of the chosen tank sizes are commercially available.

Table 8.2 details the configurations used in the sensitivity analysis.

ICE Cogeneration	ICE Size	Tank
Model Systems	(kW)	Size (kg)
System 1	1.0	300
System 2	1.0	450
System 3	2.0	300
System 4	2.0	450

 Table 8.2: Sensitivity Analysis Scenarios

To investigate the effect of using a larger ICE and thermal storage size, the three Prince George test case houses were simulated with a 3.0 kW ICE and 1000 kg storage tank. The reason for the selection of the Prince George test case houses is that they have the highest electrical demand of all of the test case houses, as well as have among the highest thermal demand.

All results from the sensitivity analysis were compared to the base case. A summary of the simulation results is presented in Chapter 9, while the full results sets are presented in Appendix H.

Chapter 9

Simulation Results and Analysis

The ICE based cogeneration simulations were run and the results compared to the base case simulation results. Both the base case and ICE based cogeneration results were analyzed on the basis of cost, using both a flat rate and a time-of-use (TOU) pricing scheme for the cost of electricity. In addition, an analysis of the GHG emissions was performed. Tables 9.1 - 9.3 present a summary of the annual simulation results and constants for test case house 10 simulated in Le Pas, Manitoba and are used in the subsequent sample calculations. The energy requirement for the idealized HVAC system and the DHW burner are based on the HHV of the fuel used, while the energy requirement for the ICE is based on the LHV of the fuel used.

 Table 9.1: Base Case Annual Simulation Results – Test Case House 10, Le Pas

Electricity Consumption (kWh/yr)	10211
Space Heating Energy Requirement (GJ/yr)	122.28
DHW Energy Requirement (GJ/yr)	24.33

Table 9.2: Base Case Constants – Test Case House 10, Le Pas

Furnace Efficiency (%)	78.0
DHW Efficiency (%)	54.3

Table 9.3: ICE Case Annual Simulation Results – Test Case House 10, Le Pas,

2 kW, 300 Litres

ICE Total Fuel Consumption (kg/yr)	4476.7
Backup Burner Output (GJ/yr)	46.16
Total Electrical Demand (kWh/yr)	11504
Total ICE Electrical Output (kWh/yr)	10512
Total Grid Import (kWh/yr)	992

The fuel heating values used in this study are presented in Table 9.4. The higher heating values (HHV) are from NRCan (2005) and the ratios of lower to higher heating values are from Çengel and Boles (2002).

 Fuel
 HHV
 LHV/HHV

 Natural Gas
 38.21 (MJ/m³)
 0.9

 Heating Oil
 38.38 (MJ/l)
 0.947

 Propane
 26.38 (MJ/l)
 0.943

Table 9.4: Fuel Heating Values

9.1 Cost Analysis

In both the base and ICE based cogeneration cases, the total cost is based on the cost of the fuel used for space and DHW heating as well as the cost of electricity, based on both flat rate and TOU pricing. Appendix F details how the flat rate and TOU pricing scheme was determined for each province.

9.1.1 Base Case Fuel Cost

The cost of fuel is determined by summing the fuel requirement for space and domestic hot water heating and multiplying by the price of the fuel. Below is a sample calculation illustrating how the total consumption of fuel and associated cost was determined. Tables 9.1 and 9.2 detail the simulation results and analysis constants for test case house 10 simulated in Le Pas, Manitoba.

The annual consumption of natural gas for space heating is determined using Equation 9.1.

Annual NG Consumption =
$$(fuel_{SH}) \times \frac{1 \times 10^3 MJ}{GJ} \times \frac{1}{HHV_y}$$
 [9.1]

Where:

Annual NG Consumption = consumption of natural gas
$$(m^3/yr)$$

 $fuel_{SH}$ = annual space heating fuel requirement (GJ/yr)

 $HHV_v =$ higher heating value of fuel (MJ/m³)

Annual NG Consumption =
$$(122.28GJ) \times \frac{1 \times 10^3 MJ}{GJ} \times \frac{1}{38.21 \frac{MJ}{m^3}} = 3200 \text{ m}^3/\text{yr}$$

The space heating demand is estimated using Equation 9.2 (Purdy and Haddad, 2002).

$$Demand_{SH} = \sum_{i=1}^{35040} Lf_i \times (capacity_{SS} + fan_i)$$
[9.2]

Where:

 $Demand_{SH}$ = estimated space heating demand (GJ/yr)

 Lf_i = furnace part load ratio at time step i

 $capacity_{ss} = steady-state furnace capacity (W)$

 $fan_i = fan power at time step i$

 $i = time-step^5$

The consumption of natural gas for DHW heating is determined using Equation 9.3.

Annual NG Consumption =
$$(fuel_{DHW}) \times \frac{1 \times 10^3 MJ}{GJ} \times \frac{1}{HHV_{y}}$$
 [9.3]

Where:

Annual NG Consumption = consumption of natural gas (m^3/yr) fuel_{DHW} = annual DHW energy requirement (GJ/yr) HHV_v = higher heating value of fuel (MJ/m³)

⁵ The total number of time-steps, using 15 minute increments for a non-leap year is 4 time-steps per hour * 24 hours per day * 365 days per year = 35040 time-steps per year.

Annual NG Consumption = $(24.33) \times \frac{1 \times 10^3 MJ}{GJ} \times \frac{1}{38.21 \frac{MJ}{m^3}} = 637 \text{ m}^3/\text{yr}$

Total Annual Natural Gas Consumption = $3200 \text{ m}^3/\text{yr} + 637 \text{ m}^3/\text{yr} = 3837 \text{ m}^3/\text{yr}$ The cost of natural gas is calculated by multiplying the total consumption in cubic metres by the price of natural gas in e/m^3 as defined in Equation 9.4.

$$Cost_{NG} = NG_{total} \times P_{NG}$$
[9.4]

Where:

 $Cost_{NG}$ = annual cost of natural gas (CAD/yr)

 NG_{tot} = annual total natural gas consumption (m³/yr)

 P_{NG} = price of natural gas (¢/m³)

$$Cost_{NG} = 3837 \frac{m^3}{yr} \times 51.3 \frac{\phi}{m^3} = 1968 \text{ CAD/yr}$$

The prices of natural gas, heating oil and propane (including delivery) used in this analysis are detailed in Tables 9.5 - 9.7.

Province	Retail Price (¢/m ³)
Manitoba	51.30
British Columbia	40.77
Ontario	49.27
Alberta	38.68
Saskatchewan	33.93

Table 9.5: Natural Gas Prices (Energy Shop, 2007)

City	Retail Price (¢/litre)
Montreal	72.0
Quebec	64.4
Saint John	72.3
Fredericton	73.6
Halifax	71.4
Sydney	71.3
Charlottetown	69.7
St. Johns	69.7

 Table 9.7: Propane Prices (MacDonald, 2007)

Province	Retail Price (¢/litre)
Nova Scotia	96.5
New Brunswick	93.5
Newfoundland	78.1
Prince Edward Island	59.0
Quebec	65.0

9.1.2 ICE Case Fuel Cost

In the ICE based cogeneration case, the fuel consumption is determined by summing the total fuel consumption of the ICE and the back-up burner output as defined in Equation 9.5. An efficiency of 80% (based on HHV) is assumed for the backup burner in all cases.

Annual NG Consumption =
$$\left((ICE_F \times LHV_m) \times \frac{1}{LHV_v} \right) + (BB_{output}) \times \frac{1}{HHV_v}$$
 [9.5]

Where:

Annual NG Consumption = annual consumption of natural gas (m^3/yr) ICE_F = annual ICE fuel consumption (kg/yr)

 LHV_m = lower heating value of fuel per unit mass (MJ/kg)

 BB_{output} = annual back-up burner output (MJ/yr)

 $HHV_v =$ higher heating value of fuel per unit volume (MJ/m³)

Annual NG Consumption =
$$\left[\left(\left((4476.7kg) \times 45\frac{MJ}{kg} \right) \times \frac{1m^3}{34.39MJ} \right) + \left(46.16GJ \times \frac{1 \times 10^{03} MJ}{GJ} \right) \times \frac{1}{38.21\frac{MJ}{m^3}} \right]$$

Annual NG Consumption = $7066 \text{ m}^3/\text{yr}$

The cost of natural gas is calculated by multiplying the total consumption in cubic metres by the price of natural gas in e/m^3 as defined in Equation 9.4.

$$Cost_{NG} = 7066 \frac{m^3}{yr} \times 51.3 \frac{\phi}{m^3} = 3625 \text{ CAD/yr}$$

9.1.3 Electricity Cost

The cost of electricity is determined using a flat rate and a TOU pricing structure. Both scenarios are presented below. The same approach is used for both the base and ICE based cogeneration cases, however in the ICE based cogeneration case, the cost of electricity represents the cost of grid-imported electricity.

9.1.3.1 Flat Rate Electricity Cost Analysis

The flat rate electricity price for Manitoba is 5.69 ϕ /kWh as detailed in Appendix F. To determine the cost of electricity using the flat rate price, the number of kilowatt-hours (kWh) is multiplied by the flat rate price of electricity according to Equation 9.6.

$$Cost_{el\ flat} = (Demand_{el}) * P_{el\ flat}$$
[9.6]

Where:

 $Cost_{el,flat}$ = annual cost of electricity using a flat rate electricity price (CAD/yr) Demand_{el} = annual electricity demand of test case house (kWh/yr)

 $P_{el,flat}$ = flat rate price of electricity (¢/kWh)

The base case cost of electricity using a flat rate is:

$$Cost_{el,flat} = 10211 \frac{kWh}{yr} \times 5.69 \frac{\phi}{kWh} = 581 \text{ CAD/yr}$$

As mentioned above, the cost of electricity in the ICE case represents the cost of gridimported electricity and is determined using Equation 9.6.

The cost of grid-imported electricity using a flat rate in the ICE based cogeneration case is:

$$Cost_{el, flat} = 992 \frac{kWh}{yr} \times 5.69 \frac{\phi}{kWh} = 56 \text{ CAD/yr}$$

9.1.3.2 Time-of-Use Electricity Cost Analysis

The total cost of electricity using the TOU scenario is calculated by summing the product of electricity demand and the cost of electricity at each time-step as defined in Equation 9.7.

$$Cost_{el,TOU} = \sum_{i=1}^{35040} (Demand_{el})_i * (P_{el,TOU})_i$$
[9.7]

Where:

 $Cost_{el,TOU}$ = annual cost of electricity using TOU pricing (CAD/yr) Demand_{el} = annual electricity demand of test case house (kWh/yr) $P_{el,TOU}$ = cost of electricity according to TOU pricing at time-step i (¢/kWh) i = time-step

The base case cost of electricity using a TOU pricing is:

 $Cost_{el,TOU} = 615 CAD/yr$

The cost of electricity using the TOU pricing scheme in the ICE case represents the cost of grid-imported electricity and is determined using Equation 9.7.

The cost of grid-imported electricity using TOU pricing in the ICE based cogeneration case is:

 $Cost_{el,TOU} = 65 CAD/yr$

9.2 GHG Analysis

To calculate the GHG emissions for the base and ICE based cogeneration cases, electricity and fuel emissions factors had to be determined. Table 9.8 lists the average electricity emissions factors ($EF_{el,avg}$) for the most current year for which there is available data (Environment Canada, 2006). The GHG emissions due to electricity, electricity generation by fuel source, and the average electricity emissions factors by province are presented in Appendix G.

	EF _{el,avg}
Province	(gCO ₂ eq/kWh)
British Columbia	24
Alberta	861
Saskatchewan	840
Manitoba	31
Ontario	222
Quebec	8
New Brunswick	433
Nova Scotia	759
Prince Edward Island	1120
Newfoundland	21

Table 9.8: Average Electricity Emissions Factors by Province

Electricity generation in Canada is primarily from three sources, namely fossil fuels, hydro and nuclear. In general, nuclear plants and some hydro plants are operated at constant load; while fluctuations in electricity demand are met primarily by fossil fuel fired power plants and in some cases, load following hydro plants. Thus, it can be argued that the GHG emissions reduction calculated using the average electricity emissions factor result in a conservative estimate since it is assumed that the reduction in electricity consumption due to using ICE based cogeneration is uniformly distributed among all types of power plants and it does not take into account transmission and distribution losses

While a more accurate method to determine GHG emissions would be to use hourly GHG emissions factors, due to the unavailability of this data, a second set of emissions factors were determined to estimate the upper limit of GHG emissions reductions by assuming that all of the savings in electricity consumption comes from fossil fuel fired power plants including average transmission and distribution losses by province.

The high intensity electricity emissions factor $(EF_{el,hi})$ is calculated according to Equation 9.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionwww.manaraa.com

$$EF_{el,hi} = \frac{GHG_{ff}}{EG_{ff} - Losses}$$
[9.8]

Where:

 $EF_{el,hi}$ = high intensity electricity emissions factor (gCO₂eq/kWh) GHG_{ff} = total GHG emissions from fossil fuel fired power plants (gCO₂eq) EG_{ff} = total electricity generation from fossil fuel fired power plants (kWh) Losses = transmission and distribution losses (kWh)

The electricity generation and GHG emissions data for each province are presented in Appendix G, while the estimates for transmission and distribution losses were taken from Guler (2000). Note that the high intensity electricity emissions factors are calculated based the most current year for which data is available as presented in Appendix G. Table 9.9 presents the high intensity electricity emissions factors as well as the transmission and distribution losses by province.

Province	EF _{el,hi} (gCO ₂ eq/kWh)	Transmission and Distribution Losses (%)
BC	375	8.0
AB	985	8.0
SK	1139	10.0
MB	1193	8.0
ON	954	8.0
PQ	549	8.0
NB	807	7.3
NS	916	8.3
PEI	1211	7.3
NF	779	8.7

Table 9.9: High Intensity Electricity Emissions Factors by Province andTransmission and Distribution Losses

The estimates for GHG emission reductions presented in this work provide and upper and lower limit. The GHG emissions reductions calculated using the average electricity emissions factor are conservative estimates, providing a lower limit; whereas the GHG emissions reductions calculated using the high intensity electricity emissions factor are liberal estimates, providing an upper limit. The actual GHG emission reduction are somewhere between these two limits.

In provinces where the dominant fuel for electricity generation is fossil based (i.e. AB, SK, NS, PEI), there is a relatively small difference (an average of 170 gCO₂eq/kWh) between the average and high intensity electricity emissions factor. In provinces where hydro and nuclear are the dominant fuel for electricity generation (i.e. BC, MB, PQ, NF), there is a large difference (as much as 1162 gCO₂eq/kWh) between the average and high intensity electricity emissions factor. In provinces where there is no dominant fuel for electricity generation (i.e. ON, NB), there is a moderate difference (average of 533 gCO₂eq/kWh) between the average and high intensity electricity emissions factors. In the provinces that have either a mixed generation capacity (ON, NB) or are dominated by hydro and nuclear (BC, MB, PQ, NF), it is likely that the nuclear and some hydro plants are operated at constant capacity and the peak loads are satisfied by fossil fuel fired plants, and in some cases load following hydro plants. Thus, it is likely that the GHG reductions are close to that calculated using the high intensity emissions factors. However, to determine an accurate electricity emissions factor, more information regarding the time-of-year and time-of-day power dispatching rules is required. In addition, when the data becomes available, GHG emissions should be analyzed on an hourly basis using hourly electricity emissions factors.

9.2.1 Base Case GHG Analysis

The GHG emissions due to electricity are calculated by multiplying the total electricity demand by the electricity emissions factor for the province as defined in Equations 9.9 and 9.10. Two estimates of the GHG emissions are given using the average and high

intensity electricity emissions factors as discussed in Section 9.2. In Manitoba, the average electricity GHG emissions factor is 31 gCO₂eq/kWh and the high intensity electricity GHG emissions factor is 1193 gCO₂eq/kWh (Environment Canada, 2006).

$$GHG_{el,avg} = (Demand_{el}) \times (EF_{el,avg})$$
[9.9]

Where:

 $GHG_{el,avg}$ = annual GHG emissions due to electricity using the average electricity emissions factor (tonnes/yr)

 $Demand_{el} = annual electricity demand of test case house (kWh/yr)$

 $EF_{el,avg}$ = average GHG emissions factor for electricity (gCO₂eq/kWh)

$$GHG_{el,hi} = (Demand_{el}) \times (EF_{el,hi})$$
[9.10]

Where:

 $GHG_{el,hi}$ = annual GHG emissions due to electricity using the high intensity electricity emissions factor (tonnes/yr)

 $Demand_{el} = annual electricity demand of test case house (kWh/yr)$

 $EF_{el,hi}$ = high intensity GHG emissions factor for electricity (gCO₂eq/kWh)

The electricity GHG emissions using the average electricity emissions factor are:

$$GHG_{el,avg} = \left(10211 \frac{kWh}{yr}\right) \times \left(\frac{31gCO_2eq}{kWh}\right) \times \frac{tonne}{1 \times 10^{06} g} = 0.32 \text{ tonnes/yr}$$

The electricity GHG emissions using the high intensity electricity emissions factor are:

$$GHG_{el,hi} = \left(10211 \frac{kWh}{yr}\right) \times \left(\frac{1193gCO_2eq}{kWh}\right) \times \frac{tonne}{1 \times 10^{06} g} = 12.18 \text{ tonnes/yr}$$

The GHG emissions due to the burning of fuel for space and DHW heating are calculated using Equation 9.11, using the fuel emissions factors listed in Table 9.10 (Aube, 2001).

	Emissions	
Fuel	Factor (CO ₂ eq)	Unit
Natural Gas	1.856	kg/m ³
Light Oil	2.835	kg/litre
Propane	1.602	kg/litre

Table 9.10: Fuel Emissions Factors

$$GHG_{th} = (Energy_{th}) * \frac{1}{HHV_{v}} * (EF_{F})$$
[9.11]

Where:

 GHG_{th} = annual fuel GHG emissions (tonnes/yr) Energy_{th} = annual thermal energy requirement of test case house (GJ/yr) HHV_v = higher heating value of fuel per unit volume (MJ/m³) EF_F = GHG emissions factor for fuel (gCO₂eq/m³)

$$GHG_{th} = (122.28GJ + 24.33GJ) \times \frac{1 \times 10^{03} MJ}{GJ} \times \frac{1}{38.21 \frac{MJ}{m^3}} \times 1.86 \frac{kg}{m^3} \times \frac{tonne}{1 \times 10^{03} kg} = 7.12 \text{ tonnes/yr}$$

The total GHG emissions are calculated by summing the GHG emissions due to electricity and the GHG emissions due to the burning of fuel as defined by Equations 9.12 and 9.13. Two estimates of the total GHG emissions are given using the average and high intensity electricity GHG emissions as discussed in Section 9.2.

$$GHG_{tot,avg} = GHG_{el,avg} + GHG_{th}$$
[9.12]

Where:

 $GHG_{tot,avg}$ = total annual GHG emissions using average electricity emissions factors (tonnes/yr)

 $GHG_{el,avg}$ = annual GHG emissions due to electricity using average electricity emissions factor (tonnes/yr)

 GHG_{th} = annual GHG emissions due to fuel (tonnes/yr)

$$GHG_{tot,hi} = GHG_{el,hi} + GHG_{th}$$

$$[9.13]$$

Where:

 $GHG_{tot,hi}$ = total annual GHG emissions using high intensity electricity emissions factors (tonnes/yr)

 $GHG_{el,hi}$ = annual GHG emissions due to electricity using high intensity electricity emissions factor (tonnes/yr)

 GHG_{th} = annual GHG emissions due to fuel (tonnes/yr)

The total GHG emissions using the average electricity emissions are:

 $GHG_{tot,avg} = 0.32 \text{ tonnes} + 7.12 \text{ tonnes} = 7.44 \text{ tonnes/yr}$

The total GHG emissions using the high intensity electricity emissions are:

 $GHG_{tot,hi} = 12.18$ tonnes + 7.12 tonnes = **19.30 tonnes/yr**

9.2.2 ICE Case GHG Analysis

The GHG emissions due to electricity are calculated by multiplying the total gridimported electricity by the emissions factor for the province as defined in Equations 9.14 and 9.15. Two estimates of the GHG emissions are given using the average and high

103

intensity electricity emissions factors as discussed in Section 9.2. In Manitoba, the average electricity GHG emissions factor is 31 gCO₂eq/kWh and the high intensity electricity GHG emissions factor is 1193 gCO₂eq/kWh (Environment Canada, 2006).

$$GHG_{el,ave} = (Demand_{el,erid}) * (EF_{el,avg})$$
[9.14]

Where:

 $GHG_{el,avg}$ = annual GHG emissions due to electricity using average electricity emissions factor (tonnes/yr)

Demand_{el.grid} = annual grid-imported electricity (kWh/yr)

 $EF_{el,avg}$ = average GHG emissions factor for electricity (gCO₂eq/kWh)

$$GHG_{el,hi} = (Demand_{el,grid}) * (EF_{el,hi})$$
[9.15]

Where:

 GHG_{el} = annual GHG emissions due to electricity using high intensity electricity emissions factor (tonnes/yr)

Demand_{el,grid} = annual grid-imported electricity (kWh/yr)

 $EF_{el,hi}$ = high intensity GHG emissions factor for electricity (gCO₂eq/kWh)

The electricity GHG emissions using the average electricity emissions factor are:

$$GHG_{el,avg} = 992 \frac{kWh}{yr} \times 31 \frac{gCO_{2eq}}{kWh} \times \frac{tonne}{1 \times 10^{06} g} = 0.03 \text{ tonnes/yr}$$

The electricity GHG emissions using the high intensity electricity emissions factor are:

$$GHG_{el,hi} = 992 \frac{kWh}{yr} \times 1193 \frac{gCO_{2eq}}{kWh} \times \frac{tonne}{1 \times 10^{06} g} = 1.18 \text{ tonnes/yr}$$

The GHG emissions due to the burning of fuel is calculated using Equation 9.16.

$$GHG_{th} = \left[\left((ICE_F \times LHV_m) \times \frac{1}{LHV_v} \right) + \left(BB_{output} \times \frac{1}{HHV_v} \right) \right] \times EF_F$$
[9.16]

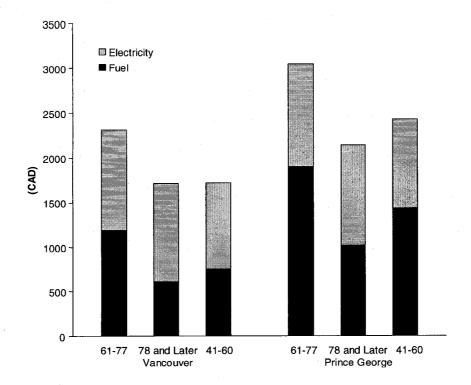
Where:

 GHG_{th} = annual fuel GHG emissions (tonnes/yr) ICE_F = annual ICE fuel consumption (kg/yr) LHV_m = lower heating value of fuel per unit mass (MJ/kg) LHV_v = lower heating value of fuel per unit volume (MJ/m³) BB_{output} = annual back-up burner output (MJ/yr) HHV_v = higher heating value of fuel per unit volume (MJ/m³) EF_F = GHG emissions factor for fuel (gCO₂eq/m³)

$$GHG_{th} = \left[\left[\left(\left(4476.7kg \times 45 \frac{MJ}{kg} \right) \times \frac{1}{34.39 \frac{MJ}{m^3}} \right) + \left(46.16GJ \times \frac{1 \times 10^{03} MJ}{GJ} \times \frac{1}{38.21 \frac{MJ}{m^3}} \right) \right] \times 1.86 \frac{kg}{m^3} \right] \times \frac{tonne}{1 \times 10^{03} kg} \right]$$

$GHG_{th} = 13.12$ tonnes/yr

The total GHG emissions are calculated by summing the emissions due to electricity and the burning of fuel as defined by Equations 9.12 and 9.13. Note that in the ICE based cogeneration case, the electricity represents the grid-imported electricity as defined in Equations 9.14 and 9.15. Two estimates of the total GHG emissions are given using the average and high intensity electricity GHG emissions as discussed in Section 9.2.


The total GHG emissions using the average electricity emissions are:

 $GHG_{tot,avg} = 0.03 + 13.12 = 13.15$ tonnes/yr

The total GHG emissions using the high intensity electricity emissions are: GHG_{tot,hi} = 1.18 + 13.12 = 14.30 tonnes/yr

9.3 Annual Simulation Results

The above analysis was carried out for all test case houses. The base case annual fuel cost and GHG emissions are presented in Figures 9.1 - 9.20. The detailed simulation results are presented in Appendix H.

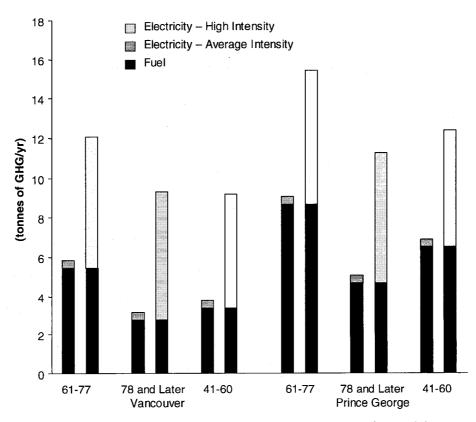


Figure 9.2: Base Case GHG Emissions – British Columbia

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

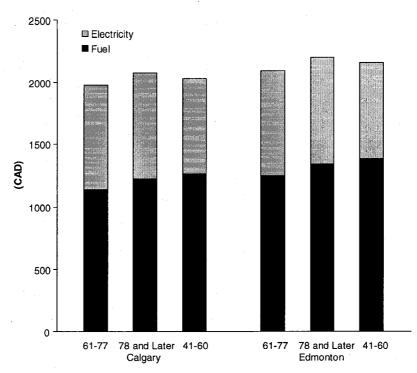


Figure 9.3: Base Case Fuel Costs – Alberta

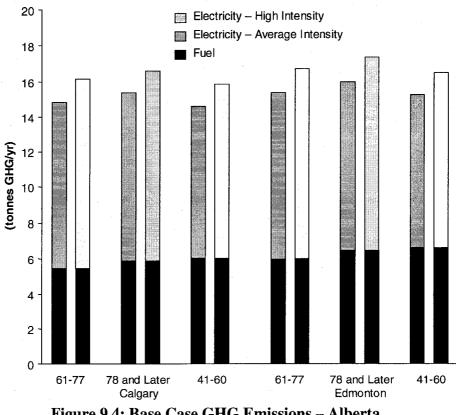
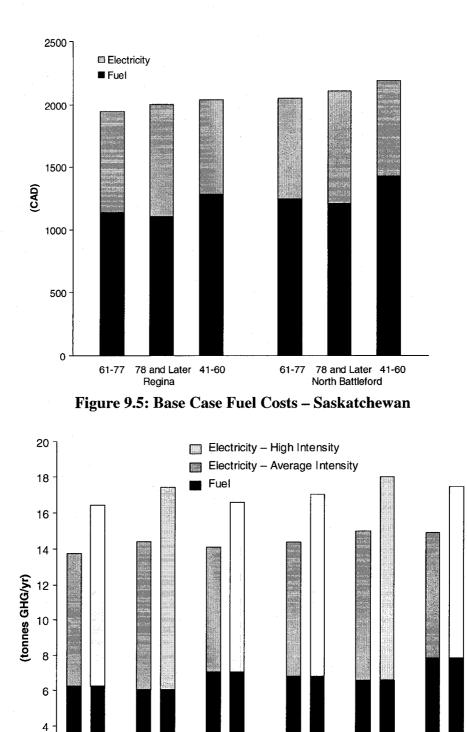



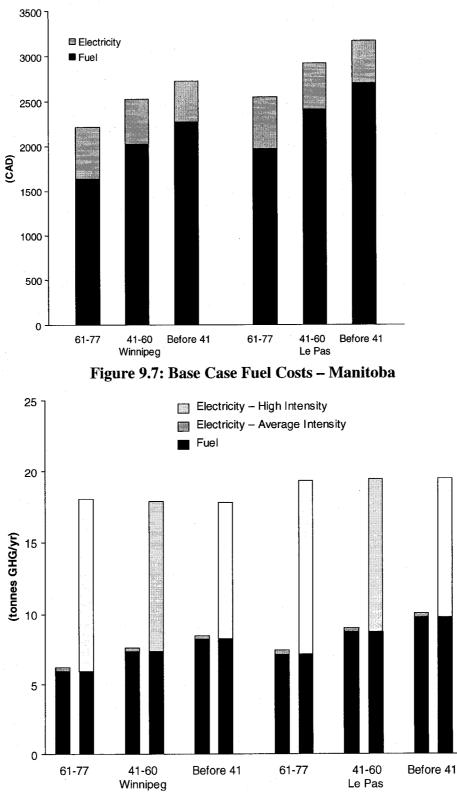
Figure 9.4: Base Case GHG Emissions – Alberta

108

41-60

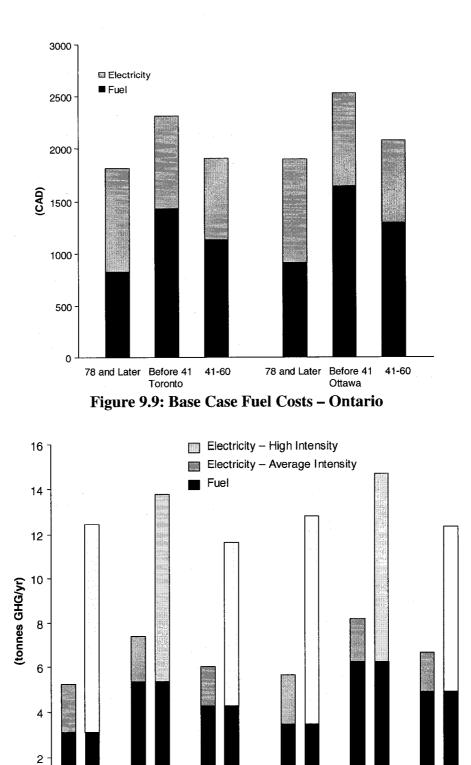
61-77

78 and Later


41-60

2

0 .


61-77

78 and Later

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

41-60

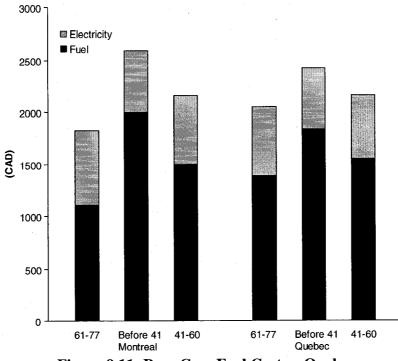
Figure 9.10: Base Case GHG Emissions - Ontario

Before 41

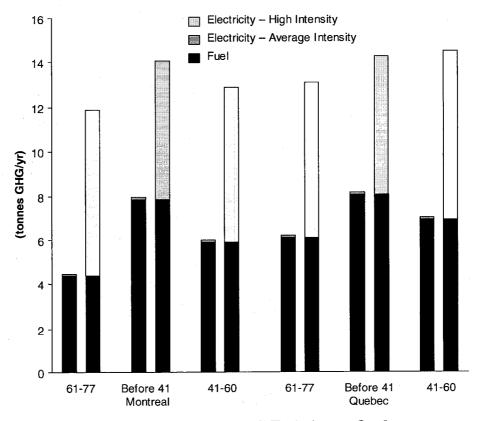
Toronto

0

78 and Later

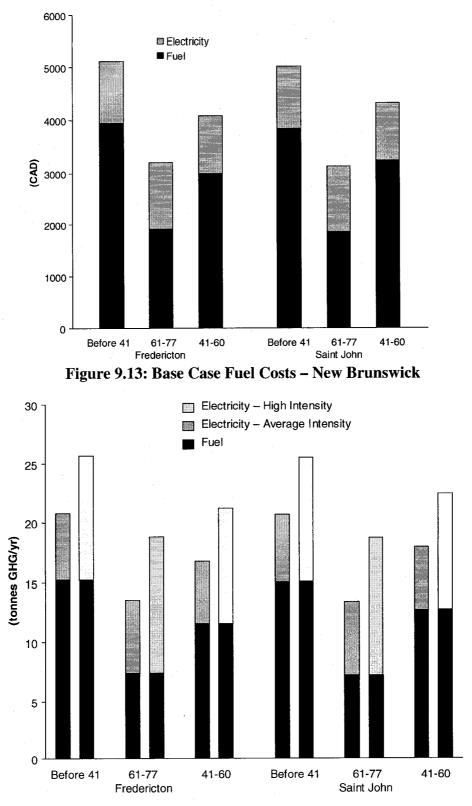

78 and Later

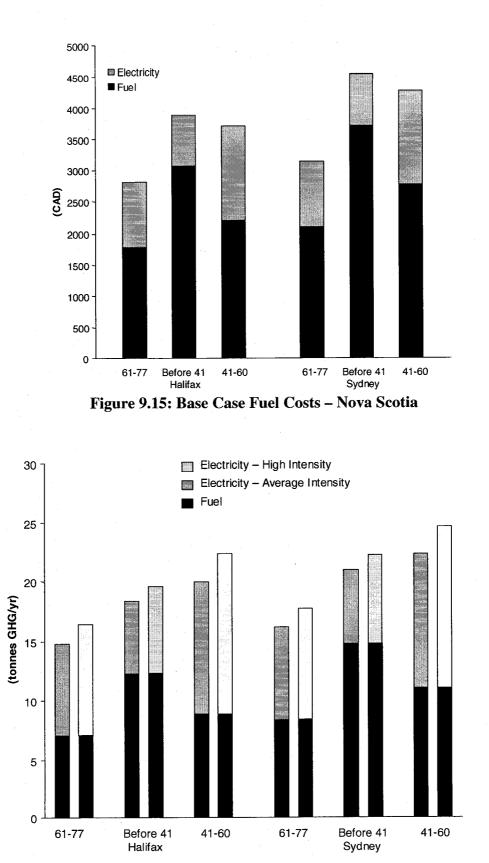

41-60


Before 41

Ottawa

111





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

114

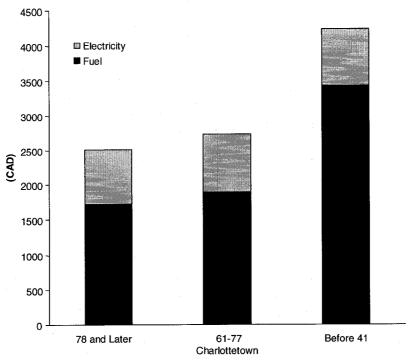


Figure 9.17: Base Case Fuel Costs – Prince Edward Island

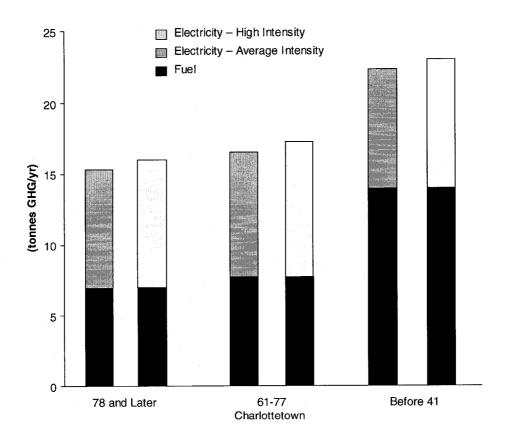
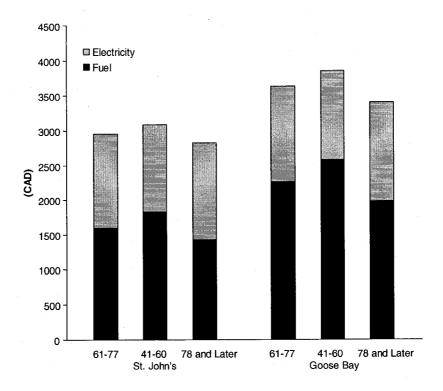
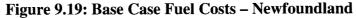
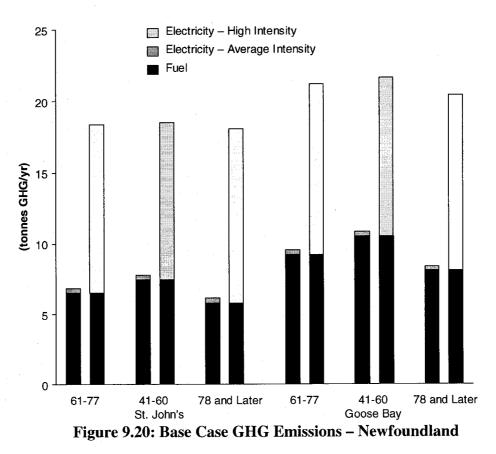





Figure 9.18: Base Case GHG Emissions - Prince Edward Island

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

9.3.1 ICE Based Cogeneration System Performance

The CHP efficiency of the ICE based cogeneration system is presented in Figure 9.21 as a function of the total annual thermal demand (space and DHW thermal demand) of the test case house.

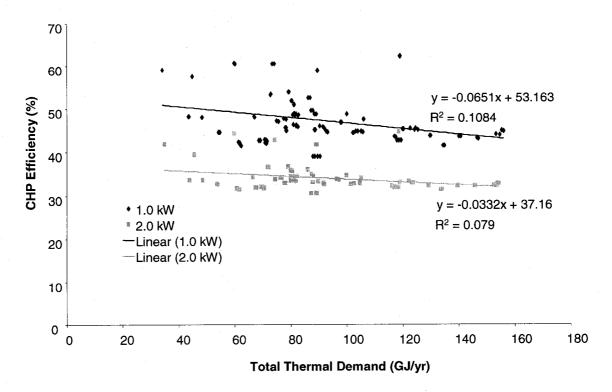


Figure 9.21: Total Thermal Demand vs. CHP Efficiency

In general, the CHP efficiency of the 1.0 kW system is higher than the 2.0 kW system as more of the heat generated can be utilized. The 2.0 kW system produces more surplus heat than the 1.0 kW system, thereby reducing the annual CHP efficiency. Using the 1.0 kW system, the annual CHP efficiencies are between ~40 % – 65 % and using the 2.0 kW system, the annual CHP efficiencies are between ~30 % – 45 %. The correlation between annual thermal demand and annual CHP efficiency is not strong (\mathbb{R}^2 less than 0.15) because there are many factors that affect the annual CHP efficiency other than total annual thermal demand. Factors including the thermal output from the ICE based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

cogeneration system, electrical demand of the test case house, electrical efficiency of the ICE based cogeneration system, length and severity of the heating season, and temporal thermal demands all affect the annual CHP efficiency.

Figure 9.22 illustrates the annual CHP efficiency versus the quotient of test case house annual electrical demand (Demand_{el}) and annual space heating demand (Demand_{SH}).

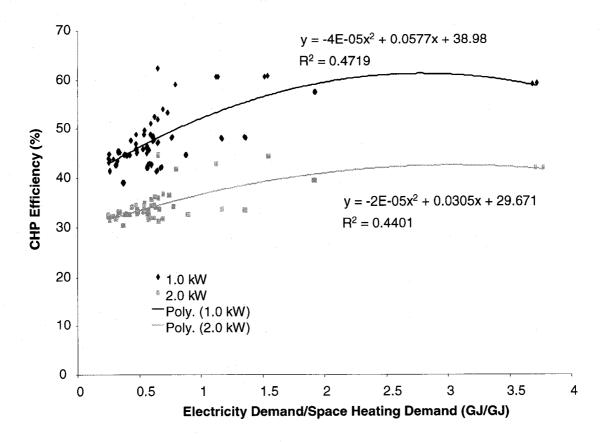


Figure 9.22: Demand_{el} / Demand_{SH} vs. CHP Efficiency

In general, the annual CHP efficiency increases as the ratio of electrical to space heating demand increases. The test case houses in British Columbia have high (> 1000 kWh/GJ) electrical demand to space heating demand ratios due to their high electrical demands (~20,000 kWh/yr). Including the effect of test case house specific annual electrical demand results in an increase in the prediction performance to $R^2 \approx 0.5$.

9.3.2 Fuel Cost Comparison

In all cases, the fuel costs in the cogeneration simulations is greater than the fuel costs in the base case. In the base case, only the energy required by the house was consumed, either through grid-imported electricity, or consuming fuel for the space and domestic hot water heating equipment. Since the cogeneration system used in this study followed the electricity demand of the house, heat was generated all year, which could not be fully utilized during the non-space heating months. The inability to fully utilize all of the generated energy leads to a fuel cost increase in all cases.

The change in total fuel cost (natural gas/propane and electricity) compared to the base case is calculated according to Equation 9.17 where a negative value indicates an increase in fuel cost.

$$\Delta \cos t = \frac{\cos t_{BC} - \cos t_{ICE}}{\cos t_{BC}} \times 100\%$$
[9.17]

Where:

 $\Delta \text{cost} = \text{change in fuel cost relative to base case cost (%)}$ $\text{cost}_{\text{BC}} = \text{total fuel cost in base case simulation (CAD/yr)}$ $\text{cost}_{\text{ICE}} = \text{total fuel cost in ICE based cogeneration simulation (CAD/yr)}$

Figure 9.23 presents the increase in fuel cost for the ICE based cogeneration simulations.

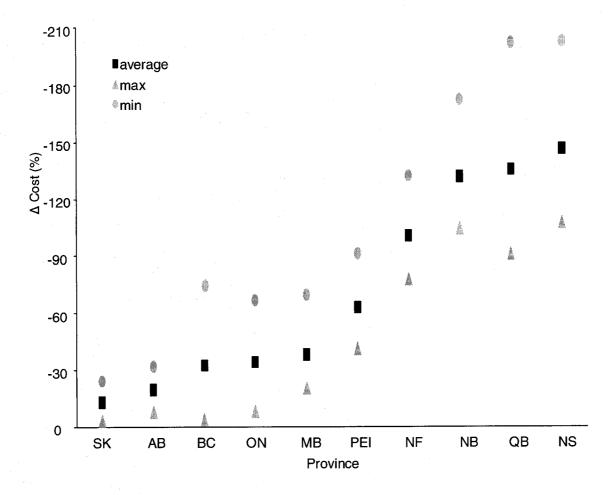


Figure 9.23: ICE Based Cogeneration Case – Comparative Fuel Costs

The economic viability of the ICE based cogeneration system in terms of fuel costs is dependent on the provincial fuel and electricity prices. The ICE based cogeneration system displaces grid-imported electricity in place of increased fuel consumption, thus the economics are favourable in provinces with relatively high electricity prices and relatively low fuel prices. A comparison of the results in Saskatchewan and Manitoba highlight this difference. In Saskatchewan, the prices are 34 ¢/m³ and 8.99 ¢/kWh for natural gas and electricity respectively. In Manitoba, the prices are 51 ¢/m³ and 5.69 ¢/kWh, for natural gas and electricity respectively. The ICE based system is more economically viable in Saskatchewan with a cost difference compared to the base case for System 1 of between -19.6% to -5.0% compared to -80.9% to -23.1% for the same

system in Manitoba. In addition, the difference in fuel costs between the base and ICE based cogeneration cases in New Brunswick, Nova Scotia, and Newfoundland are considerably higher compared to the remaining provinces because, due to the unavailability of natural gas, the ICE based cogeneration system was fuelled by propane, the most expensive of the fuels used in this study. In Quebec, while the price of propane is comparable to the price of heating oil, the fuel prices are relatively high and the electricity prices are the lowest in the country with a flat rate price of 5.22 e/kWh. This combination of higher fuel prices and lower electricity prices leads to a higher fuel cost for the ICE based cogeneration system compared to the base case. Prince Edward Island performed the best in terms of fuel costs compared the remaining provinces in Eastern Canada. This is a result of subsidized propane prices, however, compared to Western Canada, the cost of fuel is still high.

Figure 9.24 illustrates the total increase in fuel cost versus fuel and electricity prices for Saskatchewan and Quebec.

Figure 9.24: Total Fuel Cost Increase – Saskatchewan and Quebec

As can be seen from Figure 9.24, the increase in fuel cost compared to the base case is considerably higher in provinces where the price of fuel is higher than the price of electricity, when compared in ϕ/MJ . In Saskatchewan the flat rate price of electricity is 8.99 ϕ/kWh and the price of natural gas is 34 ϕ/m^3 leading to a cost increase compared to the base case of, on average 6% using the 1.0 kW system and 20% using the 2.0 kW system. In Quebec, the flat rate price of electricity is 5.22 ϕ/kWh and the price of propane is 65 $\phi/litre$ leading to a cost increase compared to the base case of 110% using the 1.0 kW system and 160% using the 2.0 kW system. In general, the higher the fuel price and the lower the electricity price, the larger the increase in total fuel cost compared to the base case

Table 9.11 lists the fuel price difference between electricity and fuel for all of the provinces where the difference is calculated using Equation 9.18.

$$\operatorname{Pr}ice_{diff} = \operatorname{Pr}ice_{elec} - \operatorname{Pr}ice_{fuel}$$
[9.18]

Where:

Price_{diff} = difference between electricity and fuel $prices(\phi/MJ)$

 $Price_{elec} = price of electricity (¢/MJ)$

 $Price_{fuel} = price of fuel (\phi/MJ)$

	Electricity Price (¢/MJ)	Fuel Price (¢/MJ)	Difference (¢/MJ)
BC	1.76	1.07	0.69
AB	2.14	1.01	1.13
SK	2.50	0.89	1.61
MB	1.58	1.34	0.24
ON	2.78	1.29	1.49
QB	1.45	2.46	-1.01
NB	2.51	3.54	-1.03
NS	2.81	3.66	-0.84
PEI	2.97	2.24	0.73
NF	2.48	2.96	-0.48

Table 9.11: Fuel Price Differences

In provinces where the electricity price (ϕ/MJ) is less than the fuel price (ϕ/MJ) , the increase in total fuel cost compared to the base case is higher than in provinces where the fuel price (ϕ/MJ) is less than the electricity price (ϕ/MJ) . This relationship is illustrated in Figure 9.25.

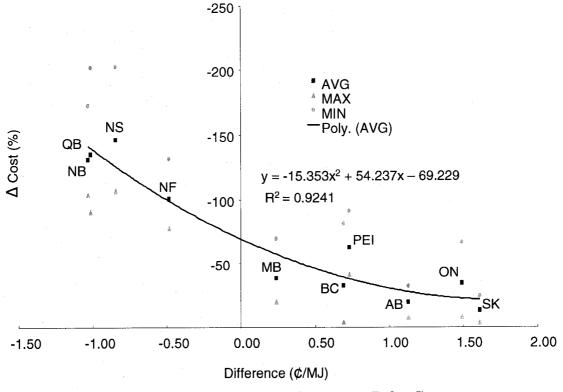
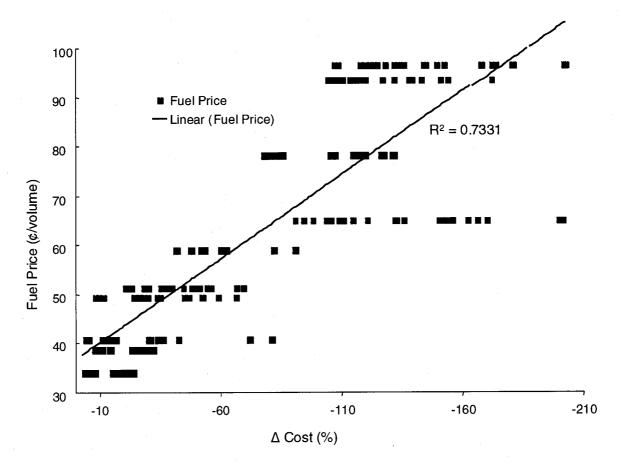



Figure 9.25: Fuel Cost Difference vs. Delta Cost

As illustrated in Figure 9.25, the increase in fuel costs compared to the base case is less in provinces where the difference between the electricity and fuel price is higher. The results for Ontario illustrate another important point. Test case houses 13 and 15 have relatively low space heating demands, (< 60 GJ/yr) thus, while the pricing structure in Ontario is such that the increase in fuel costs compared to the base case should be low, this is not the case in these two test case houses. Since the thermal demand of these two houses is not high enough to utilize the heat generated by the cogeneration system, the increase in fuel cost compared to the base case house 14 has a higher space heating demand (~80GJ) and the pricing structure in Ontario is favorable (i.e. electricity price higher than fuel price when compared in ¢/MJ), thus the total increase in fuel costs compared to the base case is lower compared to test case houses 13 and 14. Therefore, to be able to estimate the fuel cost increase expected using ICE based

cogeneration, both the local electricity and fuel prices must be known, as well as the house specific energy demands.

Since the ICE based cogeneration system displaces grid-imported electricity in place of increase fuel consumption, the total fuel cost (including both natural gas/propane and electricity) is more dependant on the local fuel price than on the local electricity price. Figure 9.26 shows the relationship between fuel price (natural gas or propane) and the total increase in fuel cost compared to the base case.

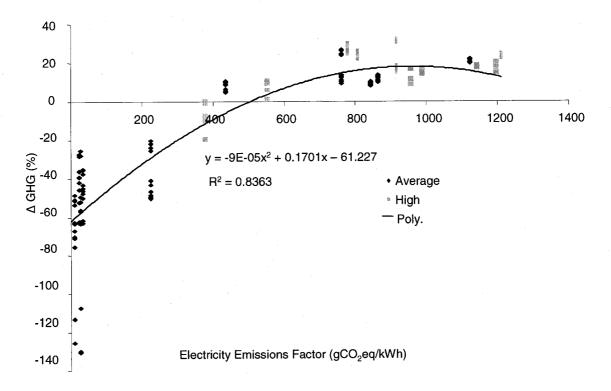
Figure 9.26: Total Fuel Increase vs. Fuel Price

As illustrated in Figure 9.26, the increase total fuel cost increases as the fuel price increases. While the amount thermal energy generated by the cogeneration system in the

non-space heating months may be comparable in different test case houses, the cost to the consumer depends on the local fuel cost. The cost of this wasted energy is a major contributing factor as to why the total fuel costs increase in all cases.

9.3.3 GHG Emissions Comparison

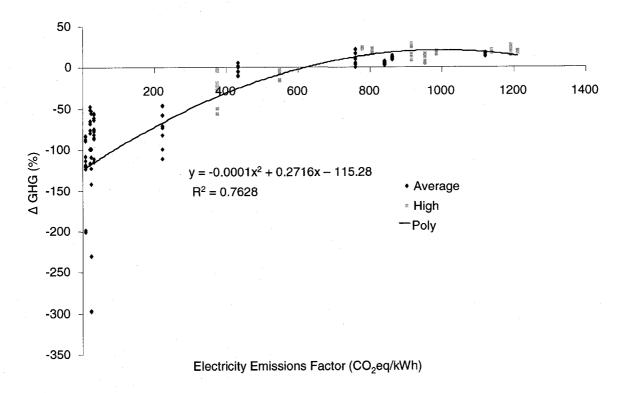
The potential reductions in GHG emissions using the ICE based cogeneration system compared to the base case is dependent on the local electricity emissions factor.


The total GHG emissions (from electricity and fuel) compared to the base case is calculated according to Equation 9.19 where a positive value indicates a reduction in GHG emissions. Two estimates of the total GHG emissions are given using the average and high intensity electricity GHG emissions as discussed in Section 9.2.

$$\Delta GHG = \frac{GHG_{BC} - GHG_{ICE}}{GHG_{BC}} \times 100\%$$
[9.19]

Where:

 Δ GHG = change in GHG emissions relative to base case GHG emissions (%) GHG_{BC} = total GHG emissions in base case simulation (tonnes/yr) GHG_{ICE} = total GHG emissions in ICE based cogeneration simulation (tonnes/yr)


Figure 9.27 presents the difference in total GHG emissions using the 1.0 kW ICE based cogeneration system compared to the base case as a function of electricity emissions factor.

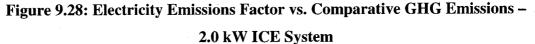
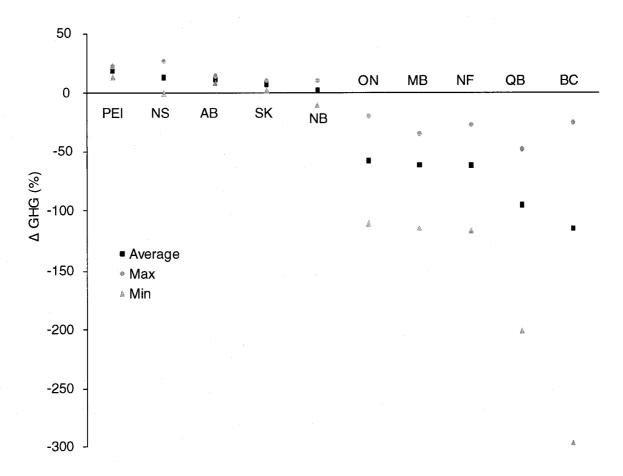
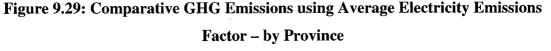


Figure 9.27: Electricity Emissions Factor vs. Comparative GHG Emissions – 1.0 kW ICE System

As can be seen in Figure 9.27, using the 1.0 kW ICE based cogeneration system results in a net reduction of GHG when the provincial electricity emissions factor is greater than approximately 400 gCO2eq/kWh.

Test case houses simulated in Alberta, Saskatchewan, New Brunswick, Nova Scotia and Prince Edward Island, when evaluated using the average electricity emissions factor realized a net GHG reduction using ICE based cogeneration. Using the high intensity electricity emissions factor, all test case houses except for those in British Columbia, realized a net GHG reduction. Figure 9.28 presents the difference in total GHG emissions using the 2.0 kW ICE based cogeneration system compared to the base case as a function of electricity emissions factor.




As can be seen in Figure 9.28, using the 2.0 kW ICE based cogeneration system results in a net reduction of GHG when the provincial electricity emissions factor is greater than approximately 750 gCO2eq/kWh.

Test case houses simulated in Alberta, Saskatchewan, Nova Scotia and Prince Edward Island, when evaluated using the average electricity emissions factor realized a net GHG reduction using ICE based cogeneration. Using the high intensity electricity emissions factor, all test case houses except for those in British Columbia and Quebec, realized a net GHG reduction.

According to the polynomial trend line used in both Figures 9.27 and 9.28, the GHG reductions decrease when the electricity emissions factor is approximately 1200 gCO2eq/kWh. This is a result of the test case house specific electricity demands being lower in PEI compared to the test case houses in provices with electricity emissions factors around 800 – 900 gCO2eq/kWh (i.e Saskatchewan and Alberta). GHG reductions depend on both electricity demand and electricity emissions factor, thus because there is less electrical demand, there is a smaller GHG reduction, even though the electricity emissions factor is higher.

The province specific results are presented in Figures 9.29 and 9.30.

As illustrated in Figure 9.29, all four ICE based cogeneration systems simulated provided a GHG reduction in the test case houses in Alberta, Saskatchewan, and Prince Edward Island when evaluated using the average electricity emissions factor. In Nova Scotia, all four ICE based cogeneration systems provided a reduction in GHG emissions using the average electricity emissions factor except for system four in test case house 22 simulated in Halifax. In the remaining provinces, British Columbia, Manitoba, Ontario, Quebec, and Newfoundland, simulations using the ICE based cogeneration system resulted in an increase in GHG emissions when evaluated using the average electricity emissions factor.

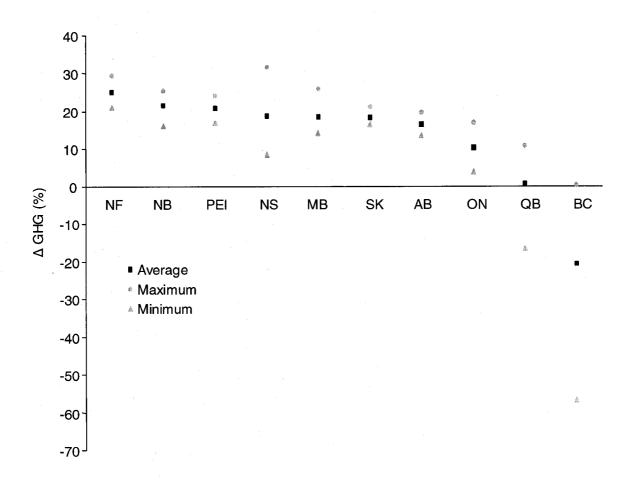


Figure 9.30: Comparative GHG Emissions using High Intensity Electricity Emissions Factor – by Province

Using the high intensity electricity emissions factor as illustrated in Figure 9.30, all four ICE based cogeneration systems provided a reduction in GHG emissions in all test case houses in Alberta, Saskatchewan, Manitoba, Ontario, New Brunswick, Nova Scotia and Prince Edward Island. In Quebec, the 1.0 kW ICE system provided a reduction in GHG emissions, however, the 2.0 kW system resulted in an increase in GHG emissions and in British Columbia, owing to the relatively low high intensity electricity emissions factor (385 gCO_{2eq}/kWh) the single only system to result in a GHG reduction was system 1 in test case house 1 simulated in Prince George.

9.3.4 Backup Burner and Heat Dump

The amount of thermal energy required from the backup burner and the amount of heat dumped are important parameters when understanding how the overall cogeneration system operates, how much additional thermal energy is required and how much surplus thermal energy is not utilized. Figure 9.31 presents the annual backup burner output as a function of annual space heating demand.

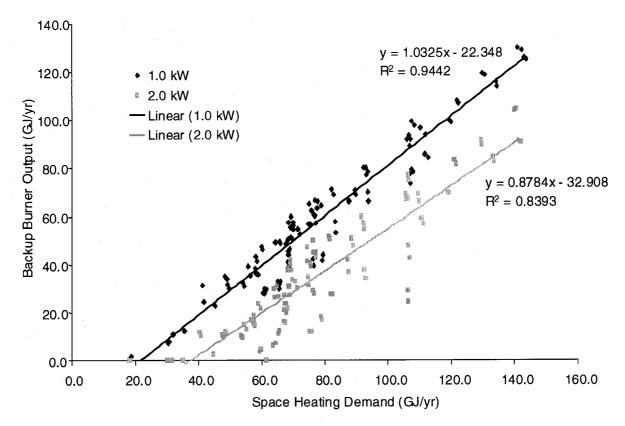


Figure 9.31: Space Heating Demand vs. Backup Burner Output

The cogeneration system operated in electricity priority control mode, thus the amount of thermal energy generated by the cogeneration system is dependent on the electricity demand of the house. Using the 1.0 kW system, the annual thermal output from the ICE based cogeneration system is between 70 – 80 GJ/yr. As illustrated in Figure 9.31, the backup burner output, in the 1.0 kW case, is dependent on the space heating demand with a high prediction performance of $R^2 = 0.9442$. The prediction performance in the 2.0 kW case is lower, $R^2 = 0.8393$, because the range of thermal output from the ICE based cogeneration system is larger, 115 - 140 GJ depending on the electricity demand of the test case house. In the cases of low space heating demand (less than 30GJ/yr), the 2.0 kW system was able to satisfy the thermal demand of the house without any contribution from the backup burner.

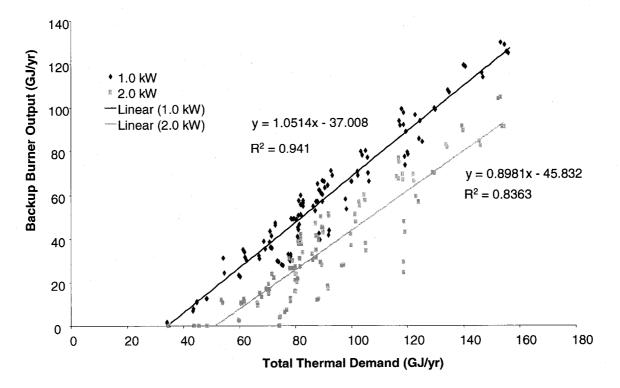


Figure 9.32: Total Thermal Demand vs. Backup Burner Output

As illustrated in Figure 9.32, the backup burner output, in the 1.0 kW case, is dependent on the space heating demand with a high prediction performance of $R^2 = 0.941$. The prediction performance in the 2.0 kW case is lower, $R^2 = 0.8363$. Including the DHW demand to determine the required backup burner output only slightly reduces the prediction performance (< 0.5%).

To account for the test case house specific electrical demand and the associated effect on backup burner output, the backup burner output is plotted as a function of electricity demand divided by space heating demand in Figure 9.33.

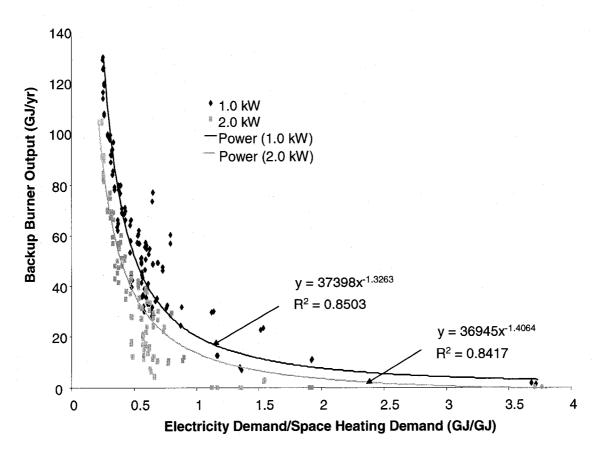


Figure 9.33: Demandel / Demand_{SH} vs. Backup Burner Output

The amount of heat dumped is a function of:

- Length of heating season
- Thermal output from the ICE based cogeneration system
- DHW demand
- Electricity demand
- Insulation level of test case house
- Site altitude⁶

⁶ The maximum power output is de-rated depending on the site altitude above sea level which also de-rates the thermal output of the ICE based cogeneration system.

Figures 9.34 - 9.37 present the annual space heating demand, annual DHW demand, total annual thermal demand, and ratio of annual electrical demand to annual space heating demand vs. the annual heat dump.

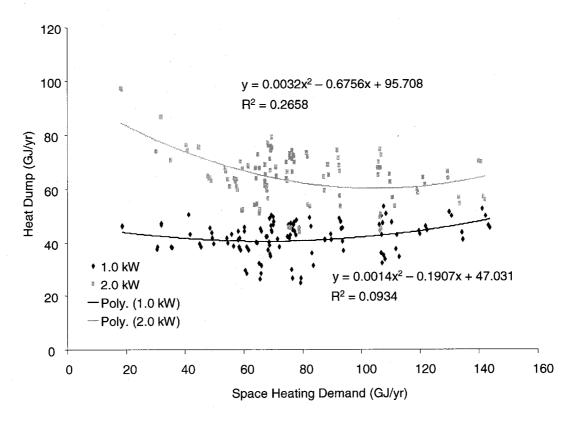
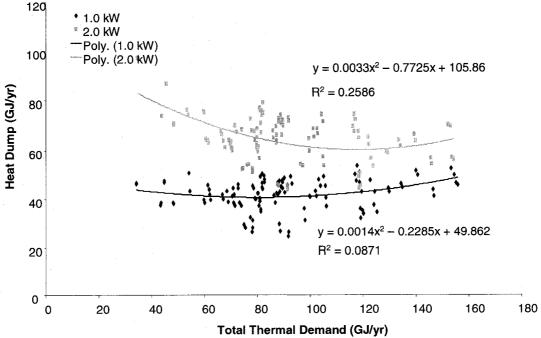
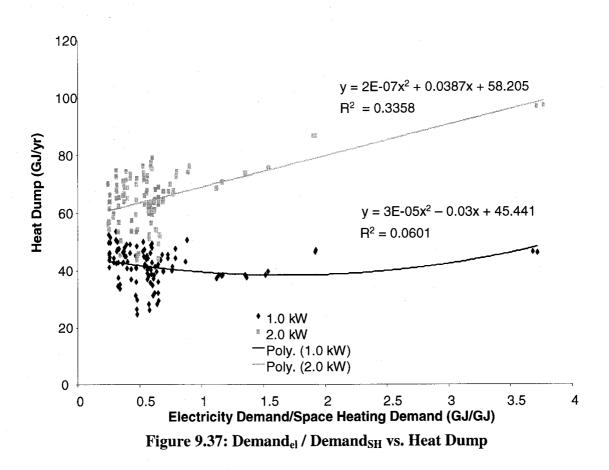



Figure 9.34: Space Heating Demand vs. Heat Dump



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

Due to the number of variables involved in determining the annual heat dump, Figures 9.34 - 9.37 show that there is not a direct correlation between annual space heating demand, annual DHW demand, total annual thermal demand, electricity demand divided by space heating demand and annual heat dump.

Figures 9.34 - 9.37 show the range of heat dump using the 1.0 kW and 2.0 kW systems. Using the 1.0 kW system, the heat dump is between 25 - 50 GJ/yr and using the 2.0 kW system, the annual heat dump is between 45 - 100 GJ/yr.

As mentioned in Section 9.3.1, since the cogeneration system used in this study followed the electricity demand of the house, heat was generated all year, which could not be fully utilized during the non-space heating months. The inability to fully utilize all of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

generated energy leads to a fuel cost increase in all cases. Figure 9.38 illustrates the increase in fuel cost as a function of annual heat dump.

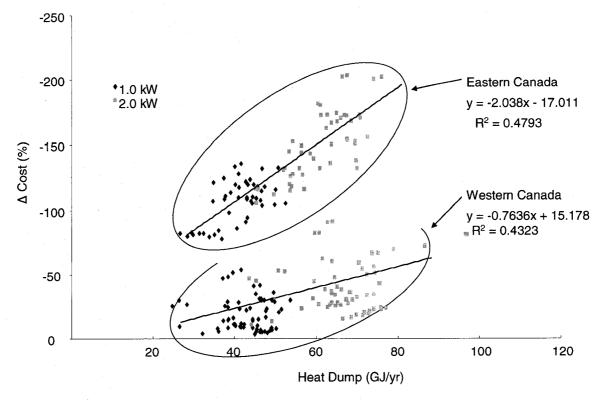


Figure 9.38: Heat Dump vs. Increase in Fuel Cost

As can be seen in Figure 9.38 as the amount of heat dumped increases, so to does the increase in fuel cost compared to the base case. As expected, the magnitude of annual heat dump and of increase in fuel cost compared to the base case are greater using the 2.0 kW system compared to the 1.0 kW system. Figure 9.38 also illustrates that, due to the high fuel prices in Eastern Canada compared to Western Canada (in many cases, more than double), even if the annual heat dump is comparable between two houses, the fuel pricess have a marked effect on the overall increase in fuel cost. This effect is seen clearly in Figure 9.38 where there are two distinct groups of data, segregated due to the large difference in fuel prices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

9.4 Regional and National Results

The annual simulation results can be extrapolated to comment on the economic and environmental impacts of using ICE based cogeneration at a regional and national level. Four cases are presented here:

- Selecting the ICE based cogeneration system for each test case house which maximizes the GHG reductions using the average electricity emissions factor
- Selecting the ICE based cogeneration system for each test case house which minimizes the increase in fuel costs using the average electricity emissions factor
- Selecting the ICE based cogeneration system for each test case house which maximizes the GHG reductions using the high intensity electricity emissions factor
- Selecting the ICE based cogeneration system for each test case house which minimizes the increase in fuel costs using the high intensity electricity emissions factor

In all cases, only the test case houses using the ICE based cogeneration system which resulted in a net GHG reduction compared to the base case are considered in this analysis, with one exception; the results for test case house 1 simulated with system 1 in Prince George are not included in the analysis because the reduction in GHG emissions is very small (<0.05 tCO2eq/yr) and, for the sake of this analysis, are considered inconsequential. Using the average electricity emissions factors, test case houses using the ICE based cogeneration system which result in a net GHG reduction compared to the base case are the test case houses in Alberta, Saskatchewan, New Brunswick, Nova Scotia and Prince Edward Island. Using the high intensity electricity emissions factor, all

test case houses except for the British Columbia test case houses resulted in a net GHG reduction compared to the base case and are considered in this analysis.

To determine the GHG reductions and associated increase in fuel costs, the results from each test case house are multiplied by the weighing factor in the SHEU database. For the purpose of this extrapolation, it is assumed that all of the houses in the test case group (i.e.: province, vintage and space heating fuel type group) are located in the two simulation cities. Table 9.12 lists the SHEU weighing factors for each test case house.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

Test Case House	Province	Vintage	Space Heating Fuel Type	SHEU Weighing Factor	
4	AB	1961-1977	Natural Gas	195889	
5	AB	1978 and later	Natural Gas	152023	
6	AB	1941-1960	Natural Gas	102455	
7	SK	1961-1977	Natural Gas	73206	
8	SK	1978 and later	Natural Gas	53821	
9	SK	1941-1960	Natural Gas	52328	
10	MB	1961-1977	Natural Gas	50603	
11	MB	1941-1960	Natural Gas	48801	
12	MB	before 1941	Natural Gas	38044	
13	ON	1978 and later	Natural Gas	444964	
14	ON	before 1941	Natural Gas	287837	
15	ON	1941-1960	Natural Gas	276848	
16	PQ	1961-1977	Oil	111517	
17	PQ	before 1941	Oil	64932	
18	PQ	1941-1960	Oil	50048	
19	NB	before 1941	Oil	15438	
20	NB	1961-1977	Oil	14416	
21	NB	1941-1960	Oil	13858	
22	NS	1961-1977	Oil	42123	
23	NS	before 1941	Oil	40453	
24	NS	1941-1960	Oil	27521	
25	PEI	1978 and later	Oil	7537	
26	PEI	1961-1977	Oil	7371	
27	PEI	before 1941	Oil	6873	
28	NF	1961-1977	Oil	16340	
29	NF	1941-1960	Oil	13568	
30	NF	1978 and later	Oil	10056	

Table 9.12: Test Case House SHEU Weighing Factors

The SHEU weighing factor for each test case house is divided between the two simulation cities using the ratio of the population of the two simulation cities according to Equation 9.20. Table 9.13 list the population figures for each of the simulation cities

(Statistics Canada, 2007) and Table 9.14 lists the city specific SHEU weighing factors used to extrapolate the test case house results.

$$WF_{1,2} = WF_{SHEU} \times \frac{P_{1,2}}{P_1 + P_2}$$
 [9.20]

Where:

 WF_1 = weighing factor for simulation city 1

 WF_2 = weighing factor for simulation city 2

 $WF_{SHEU} = SHEU$ weighing factor

 P_1 = population of simulation city 1

 P_2 = population of simulation city 2

Table 9.13: Simulation City Popu	ulation
----------------------------------	---------

City	Population
Calgary	988193
Edmonton	730372
North Battleford	13190
Regina	179246
Le Pas	5589
Winnipeg	633451
Ottawa	812129
Toronto	2503281
Montreal	1620693
Quebec	491142
Fredericton	50535
Saint John	68043
Halifax	372679
Sydney	102250
Charlottetown	32174
Goose Bay	7572
St. John's	100646

Test Case House	Simulation City	SHEU Weighing Factor	City Specific Weighing Factor
····	Prince George		20436
1	Vancouver	186858	166422
	Calgary	105000	112638
4	Edmonton	195889	83251
5	Calgary	152023	87415
5	Edmonton	152025	64608
6	Calgary	102455	58913
6	Edmonton	102433	43542
7	North Battleford	73206	5018
	Regina		68188
8	North Battleford	53821	3689
	Regina	55021	50132
9	North Battleford	52328	3587
_	Regina		48742
	Le Pas	50603	443
10	Winnipeg		50160
	Le Pas	40001	427
11	Winnipeg	48801	48374
10	Le Pas	20044	333
12	Winnipeg	38044	37711
10	Ottawa	444064	108997
13	Toronto	444964	335968
1.4	Ottawa	287837	70507
14	Toronto	287837	217330
15	Ottawa	776949	67816
15	Toronto	276848	209033
16	Montreal	111517	85582
16	Quebec	111517	25935
17	Montreal	64932	49831
17	Quebec	UT 932	15101
18	Montreal	50048	38409
10	Quebec	50040	11640

 Table 9.14: City Specific Weighing Factors

	0: 1.:		C'the Character
Test Case	Simulation	SHEU Weighing	City Specific
House	City	Factor	Weighing Factor
19	Fredericton	15438	6579
17	Saint John	13430	8859
20	Fredericton	14416	6144
20	Saint John	14410	8272
21	Fredericton	13858	5906
21	Saint John	13030	7952
22	Halifax	42123	33054
22	Sydney	42125	9069
22	Halifax	40453	31744
23	Sydney	40455	8709
24	Halifax	27521	21596
24	Sydney	27321	5925
25	Charlottetown	7537	7537
26	Charlottetown	7371	7371
27	Charlottetown	6873	6873
28	Goose Bay	16340	1143
28	St. John's	10340	15196
20	Goose Bay	105(0	949
29	St. John's	13568	12619
20	Goose Bay	10056	704
30	St. John's	10056	9352

Table 9.14 Continued: City Specific Weighing Factors

The high intensity GHG reductions for each test case house is calculated by summing the results of the two simulation cities for each test case house as defined in Equation 9.21. For example, the GHG reduction (in tonnes) for test case house 4 simulated in Calgary is multiplied by its corresponding weighing factor as listed in Table 9.14 and added to the GHG reduction (in tonnes) for test case house 4 simulated in Edmonton which is multiplied by its corresponding weighing factor as listed in Table 9.14. The results indicate the high intensity GHG reductions of test case house 4 and the associated increase in fuel costs. The same procedure is used to determine the GHG reductions for each test case house.

$$GHG_{i,MAX} = \left(\left(GHG_{i,C1} - GHG_{i,C1,BC} \right) \times WF_{i,C1} \right) + \left(\left(GHG_{i,C2} - GHG_{i,C2,BC} \right) \times WF_{i,C2} \right)$$
[9.21]
Where:

Where:

 $GHG_{i,MAX}$ = maximum GHG reduction for test case house i (tonnes/yr) $GHG_{i,C1}$ = GHG emissions for test case house i simulated in city 1 (tonnes/yr) $GHG_{i,C1,BC}$ = base case GHG emissions for test case house i simulated in city 1 (tonnes /yr)

 $WF_{i,C1}$ = weighing factor for simulation city 1, test case house i

 $GHG_{i,C2} = GHG$ emissions for test case house i simulated in city 2 (tonnes/yr)

 $GHG_{i,C2,BC}$ = base case GHG emissions for test case house i simulated in city 2 (tonnes /yr)

 $WF_{i,C2}$ = weighing factor for simulation city 2, test case house i

i = test case house number

The results for the Prairie region using the average electricity emissions factor are presented in Table 9.15 where the ICE based cogeneration system selected for each test case house and simulation city is the system that results in the highest GHG reduction compared to the base case.

Region				
Test Case House	Simulation City	System	Maximum GHG Reductions (kt)	Cost Increase (MCAD)
4	Calgary	3	352	116.2
4	Edmonton	3	552	
5	Calgary	3	- 288	61.9
. 5	Edmonton	1		
6	Calgary	1	206	0.3
0	Edmonton	1		
7	North Battleford	1	- 98	9.2
	Regina	1		
8	North Battleford	1	69	7.6
	Regina	1		7.0
9	North Battleford	1	70	5.8
	Regina	1	70	J.0

 Table 9.15: GHG Reductions using Average Electricity Emissions Factor – Prairie

For the Prairie region, selecting the ICE based cogeneration system that maximizes the GHG reductions; the average increase in fuel cost per tonne of GHG saved is 185 CAD with a GHG reduction of 1083 kt. Table 9.16 list the results for the Atlantic Region.

Test Case House	Simulation City	System	Maximum GHG Reductions (kt)	Cost Increase (MCAD)
19	Fredericton	· 1	66	82.6
19	Saint John	1	00	82.0
20	Fredericton	1	16	54.6
20	Saint John	1	10	
	Fredericton	1	37	65.1
21	Saint John	1		
22	Halifax	1	153	159.1
	Sydney	1		
23	Halifax	1	205	206.5
23	Sydney	1	205	
24	Halifax	1	299	121.5
24	Sydney	1	299	
25	Charlottetown	1	25	9.8
26	Charlottetown	1	27	9.6
27	Charlottetown	1	31	12.0

 Table 9.16: GHG Reductions using Average Electricity Emissions Factor – Atlantic

Region

For the Atlantic region, selecting the ICE based cogeneration system that maximizes the GHG reductions; the average increase in fuel cost per tonne of GHG saved is 839 CAD with a GHG reduction of 859 kt.

The same analysis is conducted selecting the ICE based cogeneration system that results in the lowest increase in fuel cost, where the increase in fuel cost is calculated using Equation 9.22.

$$Cost_{i,MIN} = \left(\left(Cost_{i,C1} - Cost_{i,C1,BC} \right) \times WF_{i,C1} \right) + \left(\left(Cost_{i,C2} - Cost_{i,C2,BC} \right) \times WF_{i,C2} \right)$$

$$[9.22]$$

Where:

 $Cost_{i,MIN}$ = minimum increase in fuel cost for test case house i (CAD/yr)

 $Cost_{i,C1} = fuel cost for test case house i simulated in city 1 (CAD/yr)$ $Cost_{i,C1,BC} = base case fuel cost for test case house i simulated in city 1 (CAD/yr)$ $WF_{i,C1} = weighing factor for simulation city 1, test case house i$ $Cost_{i,C2} = fuel cost for test case house i simulated in city 2 (CAD/yr)$ $Cost_{i,C2,BC} = base case fuel cost for test case house i simulated in city 2 (CAD/yr)$ $WF_{i,C2} = weighing factor for simulation city 2, test case house i$ i = test case house number

The results for the Prairie region are presented in Table 9.17.

Test Case House	Simulation City	System	Minimum Cost Increase (MCAD)	GHG Reductions (kt)
	Calgary	1	50.1	331
4	Edmonton	2	50.1	551
5	Calgary	2	31.3	281
3	Edmonton	1	31.5	
6	Calgary	1	17.6	204
U	Edmonton	2		
7	North Battleford	· 1	9.2	98
/	Regina	1	9.2	90
8	North Battleford	11	7.6	69
	Regina	1	7.0	
9	North Battleford	1	5.8	70
	Regina	1	3.8	

Table 9.17: Minimum Cost Increase using Average Electricity Emissions Factor –
Prairie Region

For the Prairie region, selecting the ICE based cogeneration system that minimizes the increase in fuel cost; the average increase in fuel cost per tonne of GHG saved is 115 CAD with a GHG reduction of 1053 kt.

For the Atlantic region, the selection of ICE based cogeneration system such that the increase in fuel costs is minimized results in the same ICE based cogeneration systems as in the case where the GHG reduction is maximized. Thus, whether maximizing the GHG reductions or minimizing the increase in fuel cost, the average increase in fuel cost per tonne of GHG saved is 839 CAD with a potential GHG reduction of 859 kt.

The same analysis is conducted using the high intensity electricity emissions factors and the results are presented in Tables 9.18 - 9.21. The results of selecting the ICE based cogeneration system for each test case house that maximizes the GHG reductions and multiplying by their associated weighing factors for the Prairie region are presented in Table 9.18.

Test Case House	Simulation City	System	Maximum GHG Reductions (kt)	Cost Increase (MCAD)
	Calgary	3	582	116.2
4	Edmonton	3	362	110.2
5	Calgary	3	458	86.0
5	Edmonton	3	438	80.0
6	Calgary	3	314	50.3
U L	Edmonton	3	514	
7	North Battleford	3	- 225	10.5
. 7	Regina	1		
8	North Battleford	3	182	24.0
0	Regina	3		
9	North Battleford	3	- 157	6.7
9	Regina	1		
10	Le Pas	3	- 188	74.2
10	Winnipeg	1		
11	Le Pas	3	163	34.9
	Winnipeg	3		
12	Le Pas	3	- 104	30.0
	Winnipeg	1		

Table 9.18: GHG Reductions using High intensity Electricity Emissions Factor –Prairie Region

For the Prairie region, selecting the ICE based cogeneration system that maximizes the GHG reductions; the average increase in fuel cost per tonne of GHG saved is 182 CAD with a GHG reduction of 2373 kt. Table 9.19 presents the results for the Central region.

Test Case House	Simulation City	System	Maximum GHG Reductions (kt)	Minimum Cost Increase (MCAD)	
13	Ottawa	2	658	205.7	
15	Toronto	2	038	203.7	
14	Ottawa	1	326	153.2	
14	Toronto	1	520		
15	Ottawa	2	658	62.0	
15	Toronto	2	030		
16	Montreal	1	96	252.8	
10	Quebec	1	90	252.0	
17	Montreal	1	86	140.0	
	Quebec	1	80	140.0	
18	Montreal	1	67	120.0	
10	Quebec	1	07	120.0	

 Table 9.19: GHG Reductions using High intensity Electricity Emissions Factor –

Central Region

For the Central region, selecting the ICE based cogeneration system that maximizes the GHG reductions; the average increase in fuel cost per tonne of GHG saved is 494 CAD with a potential GHG reduction of 1891 kt. Table 9.20 presents the results for the Atlantic region.

		namue ne	8.011		
Test Case House	Simulation City	System	Maximum GHG Reductions (Mt)	Minimum Cost Increase (MCAD)	
19	Fredericton	1	92	82.6	
19	Saint John	1	92	82.0	
20	Fredericton	1	66	54.6	
20	Saint John	1	00	54.0	
21	Fredericton	1	68	65.1	
21	Saint John	1	00	05.1	
22	Halifax	1	109	159.1	
	Sydney	1	109	137.1	
23	Halifax	1	131	206.5	
23	Sydney	1	131	200.5	
24	Halifax	1	193	121.5	
24	Sydney	1	195		
25	Charlottetown	1	28	9.8	
26	Charlottetown	1	31	9.6	
27	Charlottetown	1	34	12.0	
28	Goose Bay	1	83	40.2	
28	St. John's	1	65	40.2	
20	Goose Bay	1	74	33.2	
29	St. John's	1	/4	55.4	
20	Goose Bay	1	54	23.5	
30	St. John's	1	J4	23.3	

 Table 9.20: GHG Reductions using High intensity Electricity Emissions Factor –

Atlantic Region

For the Atlantic region, selecting the ICE based cogeneration system that maximizes the GHG reductions; the average increase in fuel cost per tonne of GHG saved is 849 CAD with a potential GHG reduction of 963 kt.

Using the high intensity electricity emissions factors, the same analysis is conducted selecting the ICE based cogeneration system that results in the lowest increase in fuel cost. The results for the Prairie region are presented in Table 9.21.

Test Case House	Simulation City	System	Minimum Cost Increase (MCAD)	GHG Reductions (kt)	
4	Calgary	1	50.1	477	
4	Edmonton	2	50.1	4//	
5	Calgary	2	31.3	391	
5	Edmonton	1	51.5	391	
6	Calgary	1	17.6	277	
0	Edmonton	2	17.0	211	
7	North Battleford	1	9.2	225	
/	Regina	1	9.2		
8	North Battleford	1	7.6	164	
0	Regina	1	7.0		
9	North Battleford	1	5.8	156	
,	Regina	1	5.0	150	
10	Le Pas	1	39.1	158	
10	Winnipeg	1	37.1	150	
11	Le Pas	1	34.6	162	
11	Winnipeg	1	54.0	102	
12	Le Pas	1	29.8	104	
12	Winnipeg	1	29.0	104	

 Table 9.21: Minimum Cost Increase using High intensity Electricity Emissions

Factor – Prairie Region

For the Prairie region, selecting the ICE based cogeneration system that minimizes the increase in fuel cost; the average increase in fuel cost per tonne of GHG saved is 232 CAD with a potential GHG reduction of 969 kt.

For the remaining two regions, namely, Central and Atlantic regions, the selection of the ICE based cogeneration system such that the increase in fuel costs is minimized results in the same ICE based cogeneration system as in the case where the GHG reduction potential is maximized. Thus, whether maximizing the GHG reductions or minimizing the increase in fuel cost, the average increase in fuel cost per tonne of GHG saved is 494

CAD with a GHG reduction of 1891 kt in the Central region and 849 CAD with a GHG reduction of 963 kt in the Atlantic region.

Table 9.22 summarizes the results of the above analysis and presents the GHG reduction potential and fuel cost increase at a national level.

-	Average Electricity Emissions Factor			High Intensity Electricity Emissions Factor				
Desian	GHG Reduction		Cost Minimization		GHG Reduction		Cost Minimization	
Region	GHG	Cost	GHG	Cost	GHG	Cost	GHG	Cost
	Reduction	Increase	Reduction		Reduction	1	Reduction	
	(kt)	(M\$)	(kt)	(M\$)	(kt)	(M\$)	(kt)	(M\$)
Prairie	1083	201	1053	121	2373	433	969	225
Central	-	-	-	-	1891	934	1891	934
Atlantic	859	721	859	720	963	818	963	818
Canada	1942	922	1912	841	5227	2185	3823	1977

Table 9.22: Regional and National GHG Reductions and Fuel Cost Increase

As expected, the potential GHG reductions are much higher when the high intensity electricity emissions factor is used, 5200 kt compared to 1900 kt, when the ICE based cogeneration system that results in the highest GHG reductions is used. In the Atlantic region, the same ICE based system for each test case house results in both the highest GHG emissions reduction and the lowest increase in fuel cost when evaluated using the average electricity emissions factor. The same is true in the Central and Atlantic regions using the high intensity electricity emissions factor. In the Prairie region, using the different electricity emissions factors resulted in different ICE based cogeneration systems achieving the highest GHG reductions and the lowest increase in fuel costs. As listed in Table 9.22, there is a potential for between 1900 kt – 5200 kt of GHG reductions in Canada using electricity priority controlled ICE based cogeneration in residential applications. Table 9.23 details the average cost per tonne of GHG reductions under the four cases examined here.

Average Electrici	ty Emissions Factor		lectricity Emissions
GHG Reduction	Cost Minimization	GHG Reduction	Cost Minimization
CAD/tonne	CAD/tonne	CAD/tonne	CAD/tonne
475	440	418	517

Table 9.23: Increased Fuel Cost per Tonne of GHG Reduction - Canada

At a national level, the most economical (in terms of fuel cost savings) way to reduce GHG emissions using ICE based cogeneration depends on the electricity emissions factor used. Using the average electricity emissions factor, selecting the ICE based cogeneration system which minimizes the increase in fuel costs results in a cost of 440 CAD per tonne of GHG reductions compared to 475 CAD per tonne of GHG reductions using the ICE based system that maximizes GHG reductions. The situation is reversed when using the high intensity electricity emissions factor where selecting the ICE based cogeneration system which maximizes the GHG reductions results in a cost of 418 CAD per tonne of GHG reductions compared to 517 CAD per tonne of GHG reductions using the ICE based system that minimizes the increase in fuel costs.

As can be seen from the annual simulation results, as well as the results at a regional level, the GHG reduction potential of using ICE based cogeneration and the associated increase in fuel costs vary from province to province. The GHG reductions realized using ICE based cogeneration is higher in provinces with high electricity emissions factors, and the increase in fuel costs using ICE based cogeneration are less in provinces with high electricity prices and low fuel prices. The GHG reduction achieved using ICE based cogeneration and the associated increase in fuel costs using ICE based cogeneration are less in provinces with high electricity prices and low fuel prices. The GHG reduction achieved using ICE based cogeneration and the associated increase in fuel costs are most favourable in Alberta and Saskatchewan, owing to their high electricity emissions factors and low fuel prices.

To better understand the GHG reduction potential, the percentage of houses in the total housing stock considered in the above analysis and the percentage of total residential GHG emissions are presented below. Table 9.24 presents the total number of single

detached houses in each region (Statistics Canada, 2005), and the total number of houses considered in the above analysis.

Region	Total Number of Houses	Number of Houses Considered	Percentage (%)
Prairies	1303050	767170	59
Central	3818305	1236146	32
Atlantic	632430	215553	34

 Table 9.24: Representation of Single Detached Homes by Test Case Houses

The number of houses considered in the above analysis represent 59%, 32% and 34% of the single detached houses in the Prairie, Central and Atlantic regions respectively. The total residential GHG emissions by region are presented in Table 9.25 (Environment Canada, 2006).

	Residential Sector
Region	GHG Emissions
-	(kt)
Prairies	11200
Central	24800
Atlantic	2820

Table 9.25: Total Residential GHG Emissions – by Region

Table 9.26 lists the potential percentage of residential GHG reductions assuming that all of the houses that realized a net GHG reduction using the ICE based cogeneration system install the system.

		% of Regional Residential GHG Emissions				
	Percentage	Average Elect	ricity Emissions	High Intensity Electricity		
Region	Percentage of Houses	Factor		Emissions Factor		
	01 1100303	GHG	Cost	GHG	Cost	
		Reduction	Minimization	Reduction	Minimization	
Prairies	59	10	9	21	9	
Central	32	0	0	8	8	
Atlantic	34	30	30	34	34	

 Table 9.26: Potential Percentage of Residential GHG Emissions Reduction

If all of the houses in these regions which realized a net GHG emissions reduction using ICE based cogeneration actually installed the ICE based cogeneration system, residential GHG emissions would be reduced by 10 - 21%, 8% and 30 - 34% in the Prairie, Central and Atlantic regions respectively.

9.5 Discussion

Maintenance and capital costs were not considered in this analysis, but have been estimated to be between 0.005 - 0.032 \$/kWh and 800 - 1300 \$/kW, respectively (Onovwiona and Ugursal, 2006). While the capital cost of ICE based cogeneration systems are the lowest compared to micro-turbine, fuel cell, and Stirling engine based cogeneration systems, the maintenance costs are the highest compared to these other prime movers. For a comprehensive review of the capital and maintenance costs of various residential cogeneration systems, refer to (Onovwiona and Ugursal, 2006). In addition, the value of distributed generation was not considered in the analysis. It can be argued that using ICE based cogeneration capacity, reducing investment in electricity transmission, and distribution infrastructure and avoiding transmission losses.

The ICE based cogeneration model used in this work is able to follow the electricity demand precisely. In reality however, an actual system would not be able to exactly follow the electrical demand of the house. Thus, either battery storage, or the ability to export to the grid would likely be required. Also, the ICE based cogeneration system did not modulate its output between time steps, rather instantaneously adjusted its output to match the demand at the give time step. It is recognized that this is not realistic behaviour, and that an actual system would continuously adjust its power output. In addition, the ICE based cogeneration model used in this study has a maximum electrical efficiency of 22.48%. It is recognized that there are commercially available system with electrical efficiencies as high as 30% (Senertec, 2005) and using these systems would likely provide a further reduction in fuel costs GHG emissions compared to the figures determined in this work.

In general, operating residential CHP systems to follow electric load is not the best way to utilize the energy generated. Especially in residential applications, electrical loads fluctuate dramatically depending on the time of day, and to a lesser extent, on the time of year. In most residential applications, there is not a large enough year round constant thermal demand to utilize all of the thermal energy generated. Unless the thermal energy can be used during the non-space heating months by a heat-driven cooling system, the annual CHP efficiency is reduced thereby reducing the potential fuel cost savings and GHG reductions potential. While electricity priority controlled residential cogeneration has its drawbacks, thermal priority controlled residential cogeneration does as well. In the case of thermal priority controlled residential cogeneration, the system is idle likely idle during much of the non-space heating season which leads to an increase in payback time. In general, implementing, sizing and controlling residential cogeneration systems continues to be a challenge and is dependent on many factors including:

- House specific thermal demands
- House specific electrical demands
- Local fuel prices and availability
- Local electricity prices
- Electricity emissions factors

158

oduced with permission of the copyright owner. Further reproduction prohibited without permissionwww.manaraa.com

- Local regulations on connecting distributed generation devices to central electricity grid
- High capital costs compared to conventional systems
- Lack knowledge and understanding regarding cogeneration among home owners

Chapter 10

Conclusions and Recommendations

10.1 Conclusions

As stated in Section 1.4, the objectives of this research project were to model a group of test case houses using a high-resolution building simulation program, to evaluate the efficiency of the ICE based cogeneration systems and its ability to meet the thermal and electrical demands of the test case houses and to determine the economical (in terms of fuel cost) and environmental impacts of using ICE based cogeneration systems for residential use in Canada. The said objectives were successfully achieved as follows:

- Information from three Canadian databases, namely the 1993 Survey of Household Energy Use (SHEU 1993) (Statistics Canada, 1993), the EnerGuide for Houses (EGH) (NRCan, 2005a) and New Housing Survey (NHS) (NRCan, 1997) databases was used to generate 57 independent houses models to be used as test case houses. The test case house models were created using the highresolution building simulation software ESP-r and used in subsequent simulations.
- 2) The houses models developed in ESP-r were used as the basis to perform a sensitivity analysis on the ICE based cogeneration model. Two different ICE capacities, namely a 1 kW and 2 kW ICE system and two different hot water storage tank sizes, namely 300 litre and 450 litre tank were simulated in all of the test case house models. To comment on the economic and environmental impacts of using ICE based cogeneration; the test case houses were first simulated using the existing equipment. The results of the base case simulations were used as the basis of comparison for the ICE based cogeneration simulations.
- 3) The performance in terms of electrical and CHP efficiencies of the ICE based cogeneration system in Canada was investigated. Each of the four systems was

simulated in each of the test case house models and it was determined that performance of the ICE based cogeneration systems is dependent on the thermal and electrical loads of the house, on climate, especially the severity and duration of the heating season, and on the constructional characteristics of the house.

- 4) The economic viability in terms of fuel cost of the ICE based cogeneration system was investigated. The flat rate electricity price for each province was determined and a time-of-use (TOU) pricing scenario was developed for each province. The economic viability of each test case house was evaluated using both the flat rate and TOU electricity pricing. It was determined that the economic viability, in terms of fuel costs, of the ICE based residential cogeneration controlled using electricity priority control is dependent on the provincial fuel and electricity prices. In provinces with relatively low fuel prices and relatively high electricity prices (e.g. Saskatchewan and Alberta) using the 1.0 kW ICE based cogeneration system resulted in an increase (< 15%) in cost in all of the test case houses. In provinces with relatively high fuel prices and low electricity prices (e.g. Quebec), the fuel cost using the ICE based cogeneration system was considerably higher (>90%) compared to the base case.
- 5) The potential reduction of GHG emissions using the ICE based cogeneration system was investigated. A GHG emissions analysis, including analysis on the carbon dioxide (CO₂), nitrogen oxide (N₂O) and methane (CH₄) emissions was performed on each of the test case house models for the base case scenario as well as each of the four ICE based cogeneration cases. Using both an average electricity emissions factor and a high intensity electricity emissions factor for each province (Environment Canada, 2006) as well as the emissions factors for the fuels used in this study, namely natural gas, oil and propane (CANMET, 2001) the total GHG emissions for each of the system configurations was calculated and compared the emissions profile for the base case scenario. Using

the average electricity emissions factor, it was determined that the GHG reduction potential was dependent on the provincial electricity emissions factor. In provinces where the electricity generation mix is such that the emissions factor is high, (>750 gCO₂eq/kWh), using the ICE based cogeneration system resulted in a reduction of GHGs. Specifically, the use of the ICE based cogeneration reduced GHG emissions when compared to the base case in all test case houses in Alberta, Saskatchewan, and Prince Edward Island. Using the 1.0 kW ICE based cogeneration system in New Brunswick and Nova Scotia resulted in a reduction of GHGs. In the remaining provinces, namely British Columbia, Manitoba, Ontario, Quebec and Newfoundland, the use of the ICE based cogeneration system increased the GHG emissions, as the electricity emissions factors were relatively low (<750 gCO₂eq/kWh). Using the high intensity electricity emissions factor, the use of the ICE based cogeneration reduced GHG emissions when compared to the base case in all test case houses in Alberta, Saskatchewan, Manitoba, Ontario, New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland. Using the 1.0 kW ICE based cogeneration system in Quebec resulted in a reduction of GHGs. In British Columbia, the use of the ICE based cogeneration system increased the GHG emissions.

6) The annual simulation results were extrapolated to comment on the GHG reductions and associated increase in fuel costs at a regional and national level using ICE based cogeneration. Four cases were considered, selecting the ICE based cogeneration system that resulted in the highest GHG reduction compared to the base case for each test case house and selecting the ICE based cogeneration system that resulted in the lowest increase in fuel cost for each test case house, using both the average and high intensity electricity emissions factor for each province. Using the average electricity emissions factor, selecting the ICE based cogeneration system which minimized the increase in fuel costs resulted in a fuel cost increase of 440 CAD per tonne of GHG reductions compared to 475 CAD

per tonne of GHG reductions using the ICE based system that maximized GHG reductions. The situation is reversed when using the high intensity electricity emissions factor where selecting the ICE based cogeneration system which maximized the GHG reductions resulted in a fuel cost increase of 420 CAD per tonne of GHG reductions compared to 515 CAD per tonne of GHG reductions using the ICE based system that minimized the increase in fuel costs. In Canada, there is a potential for between 1900 kt – 5200 kt of GHG reductions using electricity priority controlled ICE based cogeneration in residential applications.

10.2 Recommendations

Although the test case house models created in this work use the most recently available data and are the most comprehensive house models representing the Canadian housing stock to be modeled using ESP-r, it is recommended that the following improvements could be made to better represent the energy demand and associated costs and GHG emissions of the Canadian residential sector. Note that most of the proposed recommendations are dependent on the availability of accurate data.

- The details on house construction could be updated as more recent data representative of the Canadian housing stock becomes available. Specifically, information on the windows, including orientation, window sizes and details on the properties of the glazing material could be updated to better represent the effect of windows on the thermal demand of the building.
- Information on the occupancy schedule and the associated activities could be improved. Currently, there is a lack of accurate data detailing the activities of occupants in Canadian homes. Such information is vital in determining the casual gains due to occupants, which has a significant impact on the thermal balance of the building.

- The ICE based cogeneration model used in this work is controlled using electricity priority control. To better understand the economic viability and GHG reduction potential of ICE based cogeneration in Canadian climates, a study on the feasibility of ICE based cogeneration controlled using thermal priority control could be conducted. Using the recently available ESP-r ICE based cogeneration model capable of being controlled using thermal priority control, an analogous study could be performed to be able to provide a more comprehensive picture of the feasibility of ICE based cogeneration. In addition, the control scheme used on the pumps and fan was on/off control. Investigating the use of proportional control schemes (e.g. P, PD, PID control schemes) could potentially results in better results in terms of potential cost and GHG savings.
- It is well understood that the performance of cogeneration systems is highly dependent on the utilization of the heat generated. To improve the overall CHP efficiency of the ICE based cogeneration model, a heat driven cooling cycle (e.g. desiccant cooling system) could be coupled to the ICE based cogeneration system to better utilize the heat generated in the non-space heating months. When the heat generated by the ICE based cogeneration system is fully utilized, CHP efficiencies of 80% could be achieved. By employing a heat-driven cooling system, the heat that is generated could be used during the summer months thereby improving the annual performance of an ICE based cogeneration system. However, this improvement may only be applicable in Central Canada where the need for cooling is the greatest.
- The current study simulated two ICE capacities with two thermal storage capacities for houses with an electrical demand ranging from 10,000 kWh/yr to 20,000 kWh/yr and a thermal demand ranging from 20 GJ/yr to 145 GJ/yr. Due to the wide ranges of electrical and thermal demands, the ICE based cogeneration systems simulated were potentially over or under-sized. Thus, the results of this

study are intended to be a base upon which further studies can be based. Optimization of the ICE capacity, thermal storage capacity, pump and fan capacities based on the electrical and thermal demands of the test case houses will likely improve the performance of the ICE based cogeneration system.

• The electricity emissions factors used in this study were annual average values. Using electricity emissions factors based on time of day and time of year could provide more accurate estimates of GHG emissions.

References:

Adamson, K.A., (2006). *Fuel Cell Today Market Survery: Small Stationary Applications* 2006 [online]. Available: www.fuelcelltoday.com [2007, 22 March]

Alanne, K., Saari, A., Ugursal, V.I., Good, J., (2006). *The financial viability of an SOFC cogeneration system in single-family dwellings*, Journal of Power Sources, vol. 158, pp 403-416

ASHRAE, (1997). *Fundamentals Handbook SI Edition*, American Society of Heating, Ventilation and Air-Conditioning Engineers Inc, Atlanta USA

ASHRAE, (1999). HVAC Applications SI Edition, American Society of Heating, Ventilation and Air-Conditioning Engineers Inc, Atlanta USA

ASHRAE, (2000). HVAC Systems and Equipment SI Edition, American Society of Heating, Ventilation and Air-Conditioning Engineers Inc, Atlanta USA

ASHRAE, (1992). Cooling and Heating Load Calculation Manual 2nd Edition, American Society of Heating, Ventilation and Air-Conditioning Engineers Inc, Atlanta USA

Aube, F., (2001). Guide for Computing CO2 Emissions Related to Energy Use, CANMET Energy Diversification Research Laboratory, Technical Document, Ottawa, Canada

Aydinalp, M. (2002). A New Approach for Modeling of Residential Energy Consumption, MASc Thesis, Dalhousie University, Halifax, Canada.

Aydinalp, M., Ugursal, V.I., Fung, A.S., (2002a). Modeling of the appliance, lighting, and space cooling energy consumptions in the residential sector using neural networks, Applied Energy, vol. 71, pp 87-110

BASECALC, (2006). Software for residential basement and slab-on-grade heat-loss analysis [online]. Available: http://www.sbc.nrcan.gc.ca/software_and_tools/basecalc_e.asp [2006, 25 August]

BC Hydro, (2006). *Residential Rates* [online]. Available: http://www.bchydro.com/policies/rates/rates757.html [2006, 12 September]

Beausoleil-Morrison I. (1996). BASESIMP: A Simplified Foundation Energy-Loss Model Derived from BASECALC Simulations, NRCan Internal Report, Ottawa, Canada

Beausoleil-Morrison, I., Mitalas, G., (1997). BASESIMP: A Residential-Foundation Heat-Loss Algorithm for Incorporating into Whole-Building Energy Analysis Programs, Proceedings of Building Simulation '97. International Building Performance Simulation Association, Prague, Czech Republic, pp 1 -8

Beausoleil-Morrison, I, (2001). Residential Fuel Cell Simulation Tool, Version 1.0, Technical Documentation, CANMET Energy Technology Centre, Ottawa, Canada

Blais, S., Parekh, A., Roux, L., (2005). EnerGuide for Houses Database – An Innovative Approach to Track Residential Energy Evaluations and Measure Benefits, Ninth International IBPSA Conference, pp 71-78

Bradley, B., (1993). Implementation of the AIM-2 Infiltration Model in Hot2000, Report prepared by Unies Ltd. for Energy, Mines and Resources Canada, Ottawa, Canada

CANMET Energy Technology Centre, (2003). *Presentations from The Third Annual Worksop on Microturbine Applications* [online]. Available: http://www.nrcan.gc.ca/es/etb/cetc/cetc01/htmldocs/cesdocs/ces_rbrandon_e.html [2007, 14 March]

Capasso, A., Grattieri, W., Lamedica, R., Prudenzi, A., (1994). A Bottom-up Approach to Residential Load Modeling, IEEE Transactions on Power Systems, Vol. 9 (2)

CCHT, (2002). CCHT Simulated Occupancy Schedule [online]. Available: www.cchtcctr.gc.ca/docs/SOCShedule.pdf [2006, 7 July]

Çengel, Y.A., Boles, M.A., (2002). Thermodynamics: An Engineering Approach 4th Edition, McGraw Hill, Boston, USA

Clarke, J.A., Strachan, P.A., (1994). Simulation of Conventional and Renewable Building Energy Systems, Renewable Energy, vol. 5, pp 1178-1189

Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T., (2005). Contrasting the Capabilities of Building Energy Performance Simulation Programs, U.S.Deparment of Energy, Madison, USA

d'Accadia, M.D, Sasso, M., Sibilio, S., Vanoli, L., (2003). *Micro-combined heat and power in residential and light commercial applications*, Applied Thermal Engineering, vol. 23, pp 1247-1259

de Dear, R., Hart, M., (2002). Appliance Electricity End-Use: Weather and Climate Sensitivity, Sustainable Energy Group, Australian Greenhouse Office, Sydney, Australia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

De Paepe, M., D'Herdt, P., Mertens, D., (2006). *Micro-CHP systems for residential applications*, Energy Conversion and Management, vol. 47, pp 3435-3446

Doman, L.E., (2004). *Global Energy Use: Status and Trends*, Encyclopedia of Energy, vol. 3, pp 11-21

Dorer, V., Weber, R. Weber, A., (2005). *Performance assessment of fuel cell micro*generation systems for residential buildings, Energy and Buildings, vol. 37, pp 1132-1146

EDUCOGEN, (2001). Cogeneration Guide, European Commission

EDUCOGEN, (2001a). *The European educational tools on cogeneration*, European Commission

Energy Information Administration, (2006). *International Energy Outlook 2006*. U.S. Department of Energy, Washington, USA

Energy Shop, (2007). *Residential Natural Gas Prices* [online]. Available: http://www.energyshop.com/es/homes/gas/gas-prices.cfm [2007, 31 January]

Entchev, E., Gusdorf, J., Swinton, M., Bell, M., Szadkowski, F., Kalbfleish, W., Marchand, R., (2004). *Micro-generation technology assessment for housing technology*, Energy and Buildings, vol. 36, pp 925-931

Environment Canada, (2004). *Canadian Climate Normals* [online]. Available: http://climate.weatheroffice.ec.gc.ca/climate_normals/results_e.html [2006, 17 May]

Environment Canada, (2006). *National Inventory Report: Greenhouse Gas Sources and Sinks in Canada, 1990-2004*, The Canadian Government's Submission to the UN Framework Convention on Climate Change, Ottawa, Canada

ESP-r. (2000). *ESP-r* [online]. Available: http://www.esru.strath.ac.uk/ [2006, 2 October]

ESRU, (2002). *The ESP-r System for Building Energy Simulation: User Guide Version* 10 Series, Energy Systems Research Unit, University of Strathclyde, Glasgow, U.K.

Ferguson, A. (2003). *Fuel Cell Modelling for Building Cogeneration Applications*, MASc Thesis, Dalhousie University, Halifax, Canada.

Ferguson, A., (2006). Personal Communication via email, April, 2006

Fung, A.S. (2003). Modeling of National and Regional Energy Consumption and Associated Green House Gas Emissions, PhD Thesis, Dalhousie University, Halifax, Canada.

Fung, A.S, Guler, B. Aydinalp, M., Ugursal, V.I., (2000a). *Development of Canadian Residential Energy End-use and Emission Model*, Canadian Residential Energy End-use Data and Analysis Centre, Halifax, Canada

Good, J., Fung, A.S., Zhang, H., (2004). *Development of Occupant-driven Load Profiles* for Building Simulation, Canadian Residential Energy End-use Data and Analysis Centre, Halifax, Canada

Government of Alberta, (2006). *Regulated Electricity Rates* [online]. Available: http://www.customerchoice.gov.ab.ca/Rates-Current.pdf [2006, 11 September]

Government of Canada, (2000). *Government of Canada Action Plan 2000 on Climate Change* [online]. Available:

http://env.chass.utoronto.ca/env200y/ESSAY2001/gofcdaplan_eng2.pdf#search=%22gov ernment%20of%20canada%20action%20plan%20on%20climate%20change%202000%2 2 [2005, 7 March]

Guler, B., (2000). Impact of Energy Efficiency Retrofits on Residential Energy Consumption and Associated Greenhouse Gas Emissions. MASc Thesis, Dalhousie University, Halifax, Canada

Haugaard, P., (2003). Investigation and implementation of building simulation programmes – especially ESP-r, MASc. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark

Hawkes, A.D., Aguiar, P., Croxford, B., Leach, M.A., Adjiman, C.S., Brandon, N.P., (2007). Solid oxide fuel cell micro combined heat and power system operating strategy: Options for provision of residential space and water heating, Journal of Power Sources, vol. 164, pp 260-271

Hensen, J.L.M. (1991). On the thermal interaction of building structure and heating and ventilating systems. PhD Thesis ESRU, University of Strathclyde, Glasgow, UK

Hensen, J. L. M., Clarke, J. A., Hand, J. W. and Strachan, P. (1993). *Joining forces in building energy simulation*, In *Proc.* of the Building Simulation '93 Conference, 16-18 August 1993, Adelaide, Australia, pp. 17-23, International Building Performance Simulation Association

Hinojosa, L.R., Day, A.R., Maidment, G.G., Dunham, C., Kirk, P., (2005). A comparison of combined heat and power feasibility models, Applied Thermal Engineering, Article in Press

Houston Advanced Research Centre, (2007). *Stirling Engines* [online]. Available: http://www.gulfcoastchp.org/Technologies/Power/StirlingEngines [2007, 22 March]

Hydro Quebec, (2006). *Domestic Rate Structure* [online]. Available: http://www.hydroquebec.com/residential/bill/tarif_d.html [2006, 11 September]

Infinia Corporation, (2005). *Infinia Applications – Combined Heat and Power* [online]. Available:http://www.infiniacorp.com/applications/combined_heat_power.htm [2007, 22 March]

Knight, I. and Ugursal, V.I., (2005). *Residential Cogeneration Systems: A Review of Current Technologies*, A Report of Annex 42 of the International Energy Agency, Energy Conservation in Buildings and Community Systems Programme

Lopez, P., (2001). *Hot3000 DHW Model Report*, CANMET Energy Technology Centre, Ottawa, Canada

MacDonald, G., (2007). Personal Communications via telephone, 1-877-873-7467, January. 2007

Manitoba Hydro, (2006). *Residential Rates* [online]. Available: http://www.hydro.mb.ca/your_service/er_monthly_rates.shtml [2006, 11 September]

Maritime Electric, (2006). *Residential Service Rate Schedule* [online]. Available: http://www.maritimeelectric.com/16policies.html#n1 [2006, 11 September]

MJ Ervin and Associates, (2007). Weekly Price Survey [online]. Available: http://www.mjervin.com/WPPS_Public.htm [2007, 31 January]

Natural Resources Canada, (2005). *Energy Efficiency Trends in Canada 1990-2003*, Natural Resources Canada, Ottawa, Canada

Natural Resources Canada, (1996). HOT2000 Batch V7.13 User Manual, Natural Resources Canada, Ottawa, Ottawa, Canada

Natural Resources Canada, (1997). Survey of Houses built in 1994, Statistical Report, Natural Resources Canada, Ottawa, Canada

Natural Resources Canada, (2005a). Service Organizations' User Guide Electronic File Transfer for EnerGuide for Houses, Natural Resources Canada, Ottawa, Canada

NB Power, (2006). *Rates and Policies* [online]. Available: http://www.nbpower.com/en/customers/residential/rates/rates.aspx [2006, 11 September]

Newfoundland Power, (2006). *Schedule of Rates, Rules and Regulations* [online] Available: https://secure.newfoundlandpower.com/AboutUs/PDF/ratebook.pdf [2006, 11 September]

Nova Scotia Power, (2006). *Domestic Service Time-of-day Tariff* [online]. Available: http://www.nspower.ca/about_nspi/rates_regs/regulatory_initiatives/definitions/Domestic ServiceTime.shtml [2006, 11 September]

Onovwiona, H.I. (2005). Modelling of Reciprocating Internal Combustion Engine Based Cogeneration System for Residential Applications. MASc Thesis, Dalhousie University, Halifax, Canada

Onovwiona, H.I., Ugursal, V.I., (2006). *Residential cogeneration systems: review of the current technology*, Renewable and Sustainable Energy Reviews, vol. 10, pp 389-431

Onovwiona, H.I., Ugursal, V.I., Fung, A.S., (2007). *Modeling of internal combustion engine based cogeneration systems for residential applications*, Applied Thermal Engineering, vol. 27, pp 848-861

Ontario Energy Board, (2006). *Electricity Prices* [online]. Available: http://www.oeb.gov.on.ca/documents/consumers/infocentre/brochure_electricity-210406.pdf [2006, 11 September]

Paatero, J.V., Lund, P.D., (2006). A model for generating household electricity profiles, International Journal of Energy Research, vol. 30, pp 273-290

Peacock, A.D., Newborough, M., (2005). Impact of micro-CHP systems on domestic sector CO₂ emissions, Applied Thermal Engineering, vol. 25, pp 2653-2676

Pilavachi, P.A., (2002). *Mini- and micro-gas turbines for combined heat and power*, Applied Thermal Engineering, vol. 22, pp 2003-2014

Possidente, R., Roselli, C., Sasso, M., Sibilio, S., (2006). *Experimental analysis of micro-cogeneration units based on reciprocating internal combustion engine*, Energy and Buildings, vol. 38, pp 1411-1422

Purdy, J., Beausoleil-Morrison, I., (2001). *The Significant Factors in Modelling Residential Buildings*, Proceedings of the 7th International IBPSA Conference on Building Simulation, Rio de Janeiro, Brazil

Purdy, J. and Haddad, K.H., (2002). *Integrating a Furnace Model into a Building Energy Analysis Software*, Proceedings of the Canadian Building Energy Simulation Conference, Montreal, Quebec

Santangelo, P.E., Tartarini, P., (2007). Fuel Cell and traditional technologies. Part I: Experimental CHP approach, Applied Thermal Engineering, vol. 27, pp 1278-1284

SaskPower, (2006). *Residential* [online]. Available: http://www.saskpower.com/yourhome/rr/doc1.shtml [2006, 11 September]

Senertec, (2005). Technical Data [online]. Available: http://www.senertec.de/show_pdf_en.php?name=4798_092_107_technical_data [2007, 29 May]

Sier, R., (2002). Sigma Elektroteknisk A.S [online]. Available: http://www.stirlingengines.org.uk/manufact/manf/misc/sig.html [2007, 22 March]

SOLO Stirling Engine, (2006). SOLO Stirling 161 microCHP- Module [online]. Available: http://www.stirling-engine.de/engl/index.html [2007, 22 March]

Statistics Canada, (1993). Survey of Household Energy Use Micro-data User's Guide, Statistics Canada, Ottawa, Canada

Statistics Canada, (2005). *Private households by structural type of dwelling, by province and territory (2001Census)* [online]. Available: http://www40.statcan.ca/l01/cst01/famil55a.htm [2007, 29 May]

Statistics Canada, (2007). Population and dwelling counts, for Canada, provinces and territories, and census subdivisions (municipalities), 2006 and 2001 censuses [online]. Available: http://www12.statcan.ca/english/census06/data/popdwell/Tables.cfm [2007, 5 April]

Sunpower, (2006). Prototype Performance and Physical Specifications [online]. Available: http://www.sunpower.com/index.php?pg=15 [2007, 22 March]

Walker I. S. and Wilson D.J., (1990). AIM-2: The Alberta Air Infiltration Model, University of Alberta, Department of Mechanical Engineering Report 71

WhisperGen, (2004). Products – AC WhisperGen [online]. Available: http://www.whispergen.com/index.cfm [2007, 22 March]

Appendix A

Database Details

Table A.1 lists the data available in the SHEU database.

Inquiry Field	Description
1	Sequence number
2	Survey date
3	Province
4	Size of area of residence
5	Weight
6	Type of dwelling
7	Owner/renter
8	Number of household members
9	Number of employed household members
10	Number of household members less than 15 years of age
11	Number of household members age 15 or more
12	Number of children less than 2 years of age
13	Number of children from 2 to 5 years of age
14	Number of children from 6 to 14 years of age
15	Number of household members from 15 to 19 year of age
16	Household composition
17	Age of first member
18	Sex of first member
19	Marital status of first member
20	Relationship to head of first member
21	Labor force status of first member
22	Education of first member
23	Age of second member
24	Sex of second member
25	Marital status of second member
26	Relationship to head of second member
27	Labor force status of second member
28	Education of second member
29	Age of third member
30	Sex of third member
31	Marital status of third member

Table A.1:	Data	available	in	SHEU
------------	------	-----------	----	------

Inquiry Field	Description
32	Relationship to head of third member
33	Labor force status of third member
34	Recoded education of third member
35	Collection type
36	Did you receive the guide we mailed you?
37	Best person to answer questions?
38	Have you completed the guide?
39	How many refrigerators do you use?
40	Main refrigerator: make and model flag
41	Second refrigerator: make and model flag
42	Age main refrigerator
43	Age second refrigerator
44	Doors main refrigerator
45	Doors second refrigerator
46	Size of main refrigerator
47	Size of secondary refrigerator
48	Main refrigerator frost-free or manually defrosted
49	Second refrigerator frost-free or manually defrosted
50	Automatic ice-maker in the door (main)
51	Automatic ice-maker in the door (second)
. 52	Cooking appliances
53	If separate cook top, what fuel
54	Other cooking appliances
55	Stove: make and model flag
56	How old is your stove/oven?
57	What fuel(s) does your stove/oven use
58	Does your oven have the self-cleaning feature?
59	How often is the self-cleaning feature used?
60	Is it a convention oven?
61	Do you use an exhaust fan in your kitchen?
62	Does it have an outdoor vent?
63	Do you use a microwave oven?
64	How often is your microwave used for reheating?
65	How often is your microwave of used for defrosting?
66	How often is your microwave used for cooking?
67	Do you use a dishwasher?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
68	Dishwasher: make and model flag
69	How old is your dishwasher?
70	Is it built-in dishwasher?
71	Is it a compact or standard size dishwasher?
72	does your dishwasher have the air dry option
73	Is it heat dry only?
74	Do you usually dry the dishes with?
75	How many loads of dishes do you do in an average week?
76	How many freezers do you use?
77	Main freezer: make and model flag
- 78	Second freezer: make and model flag
79	Age of main freezer
· 80	Age of second freezer
81	Is your main freezer a chest or upright?
82	Is your second freezer a chest or upright?
83	What is the size of your main freezer?
84	What is the size of your second freezer?
85	Do you use a washing machine?
86	Type of washing machine
87	Washing machine: make and model flag
88	How old is your washing machine?
89	What size (tub capacity) is the washing machine?
90	Do you have a hot water temp option for washing?
91	Do you have a warm water temp option for washing?
92	Do you have a cold water temp option for washing?
93	Do you have a hot water temp option for rinsing?
94	Do you have a warm water temp option for rinsing?
95	Do you have a cold water temp option for rinsing?
96	What water temperature do you use most often for washing?
97	And for rinsing?
	Can you choose the water level in your washing machine depending on your
98	needs?
99	Do you use this feature?
100	On an average week in winter, how many loads of laundry do you wash?
101	Loads of laundry washes in summer?
102	Washer/dryer combination
103	Do you use a clothes dryer in your house or apartment?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
104	Clothes dryer: make and model flag
105	What size (drum size) is your clothes dryer?
106	How old is your clothes dryer?
107	Does your clothes dryer use?
108	Does your clothes dryer have manual timer?
109	Does your clothes dryer have an automatic shut off when the clothes are dry?
110	Does your clothes dryer have cool-done or perm press setting?
111	Do you regularly use the manual timer?
112	Do you regularly use the automatic shut off?
113	Do you regularly use the cool-down or perm press setting?
114	On an average week in winter, how many loads of laundry do you dry in the clothes dryer?
115	On an average week in summer, how many loads of laundry do you dry in the clothes dryer?
116	How many color TV sets?
117	How many black and white TV sets?
118	How many VCRS?
119	How many CD players?
120	How many other separate stereo systems?
121	How many computers?
122	How many electric blankets?
123	How many waterbed heaters?
124	How many portable humidifiers?
125	How many portable dehumidifiers?
126	How many car block heaters?
127	How many interior car warmers?
128	How many water coolers?
129	How many fish tanks with pump, heater and light?
130	How many bathroom exhaust fans?
131	Apartment or house
132	Do you have a heat pump?
133	Is your heat pump air source or ground source?
134	How old is it?
135	How much power does your heat pump have (BTU)?
136	Do you use a back-up furnace with your heat pump?
137	What fuel does this furnace use?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
138	What is the heating equipment that heats most of the house?
139	How many furnaces, boilers or woodstoves?
140	Fuel used for primary heating
141	Second fuel used by the primary heating system
142	What is the efficiency rating of the heating equipment (gas or oil only)?
143	Furnace (oven): make and model flag
144	How old is the heating equipment?
145	Do you use a central electronic air filter?
146	Do you use central electronic humidifier?
147	Do you use a central electronic dehumidifier?
148	Do you use a programmable thermostat with a timer?
149	Do you have a wood burning fireplace in your home?
150	How many wood burning fireplaces?
151	Does it have glass doors?
152	Does it have a fireplace insert?
153	How old is it?
154	About how often do you use the fireplace during the heating season?
155	Do you have a gas burning fireplace in your home?
156	How many gas burning fireplaces?
157	Supplementary heating equipment - wood stove?
158	How old is it?
159	What area is it heating?
160	On average, how often do you use it during the heating season?
161	Supplementary heating equipment - electric baseboards?
162	First area for supplementary baseboards
163	Second area for supplementary baseboards
164	Third area for supplementary baseboards
165	Supplementary heating equipment - portable heaters
166	Where was the supplementary portable heater used?
167	Fuel for supplementary portable heater
168	Any other supplementary heating
169	First area for other supplementary heating
170	Second area for other supplementary heating
171	Third area for other supplementary heating
172	Fuel for other supplementary heating

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
173	Use of supplementary heating
174	During the last heating season, would you say you used your supplementary heating system?
175	Use of wood for heating
176	How many cords of wood do you use in an average year?
177	What type of wood is it?
178	At what temp do you usually maintain most of your home during the heating season (6AM-6PM)?
179	At what temp do you usually maintain most of your home during the heating season (6PM-10PM)?
180	At what temp do you usually maintain most of your home during the heating season (10PM-6AM)?
181	How many storeys, excluding the basement does your house have?
182	What are most of the exterior walls of your house made of?
183	What other material, if any, is used on the exterior walls?
184	To your knowledge, have any improvements been made to the insulation of the walls, excluding siding?
185	Was the insulation added to the outside or put inside the wall?
186	When was the insulation added?
187	To your knowledge, have any improvements been made to the insulation of the roof or the attic, excluding replacement of the roof?
188	When were the improvements made?
189	Approximately, what is the total heated living are of your house (sq. feet), excluding basement and garage?
190	Total number of heated rooms excluding basement, attic and bathrooms?
191	Does this house have a basement?
192	What is the square footage of your basement or crawl space?
193	Are the basement walls (foundation) insulated on the inside?
194	How are the basement walls insulated?
195	To your knowledge, have any improvements been made to the insulation of the basement walls?
196	When were these improvements made?
197	Not including the carpeting or flooring, is the basement floor insulated?
198	Is it fully or partially insulated?
199	To your knowledge, have any improvements been made to the insulation of the basement floors?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
201	Is the basement usually heated?
202	How much of the basement is area is heated?
203	Do you have a heated garage solely for the use of your household?
204	Is your garage attached to your house?
205	Is your garage under a heated room?
206	Does it have an insulated door?
207	Do you have an attic?
208	Do you have a heated solarium or sunroom?
209	Do you have any wood doors that lead to the outside or unheated areas?
210	How many wood doors with storm doors?
211	How many wood doors without storm doors?
212	Do you have any metal doors that lead to outside or unheated areas?
213	How many metal doors with storm doors?
214	How many metal doors without storm doors?
215	Do you have any patio doors that lead to outside or unheated areas?
216	How many patio doors?
217	Do you have any other exterior doors that lead to outside or unheated areas?
218	How many other exterior doors?
219	Do you feel there are any air leaks or drafts around your doors?
220	Do they all leak?
221	Were any of your exterior doors replaced?
222	When were the exterior doors replaced?
223	Have improvements been made to the weather-stripping/caulking of the doors?
224	When were the improvements made?
225	Was it done by a professional?
226	Do you have any skylights?
227	How many skylights are triple pane?
228	How many skylights are double pane?
229	How many skylights are single pane?
230	In the heated part of your house, do you have any triple pane windows?
231	How many are triple pane picture (oversized) windows?
232	How many are triple pane other size windows?
233	In the heated part of your house, do you have any double pane windows?
234	How many are double pane picture (oversized) windows?
235	How many are double pane other size windows?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
	In the heated part of your house, do you have any single pane windows with
236	storm windows?
237	How many single pane picture (oversized) windows with storm windows?
238	How many are single pane other size windows with storm windows?
239	In the heated part of your house, do you have and single pane windows without storm windows?
240	How many are single pane picture (oversized) windows without storm windows?
241	How many are single pane other size windows without storm windows?
242	Excluding storm windows what are most of your window frames made of?
243	Do you feel there are any air leaks or drafts around your windows?
244	Do all of the windows leak?
245	Have any of your windows been replaced?
246	When were any of the windows replaced?
247	Have any improvements been made to the caulking or weather-stripping of the windows?
248	When were the improvements made?
249	Was it done by a professional?
250	Do you have a central ventilation system (air exchanger)?
251	Does it have heat recovery (heat exchanger)?
252	When is it used?
253	Do you use a central vacuum cleaner?
254	Do you use a sump pump?
255	Do you use a water softener?
256	Do you have a swimming pool solely for the use of your household?
257	Do you use a pool heater?
258	What kind of pool heater do you use?
259	Do you use a timer with your pool heater?
260	Do you use a solar blanket?
261	Do you have a hot tub/Jacuzzi/whirlpools?
262	How many hot tub/Jacuzzi/whirlpools indoor?
263	How many hot tub/Jacuzzi/whirlpool outdoor?
264	Do you have a sauna?
· · · · · · · · · · · · · · · · · · ·	BEGINNING OF APARTMENT SECTION
265	Approximately, what is the total heated living area of your apartment (sq. feet)?
266	Total number of heated rooms excluding bathroom?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
267	What is the heating equipment that heats most of your apartment?
268	Fuel used by primary heating system?
269	Secondary fuel used by the primary heating system?
270	Do you have control over the temperature in your apartment?
271	At what temp do you usually maintain most of your home during the heating season (6AM-6PM)?
272	At what temp do you usually maintain most of your home during the heating season (6PM-10PM)?
273	At what temp do you usually maintain most of your home during the heating season (10PM-6AM)?
274	Do you have a wood burning fireplace in your apartment?
275	How many wood burning fireplaces in your apartment?
276	Does it have glass doors?
277	Does it have a fireplace insert?
278	How old is it?
279	About how often do you use the fireplace during the heating season?
280	Do you have a gas burning fireplace in your apartment?
281	How many gas burning fireplaces in your apartment?
282	Do you use a supplementary heating wood stove?
283	How old is the supplementary heating wood stove?
284	On average, how often do you use your supplementary Wood stove during the heating season?
285	Do you use supplementary electric baseboards?
286	Do you use supplementary portable heaters?
287	What fuel does the supplementary portable heater use?
288	Do you use other supplementary heating?
289	What fuel does the other supplementary heater use?
290	Use of supplementary heating?
291	During the last heating season, would you say you used your supplementary heating system?
292	Use of wood for heating?
293	How many cords of wood do you use in an average year?
294	What type of cord is it?
	END OF APARTMENT SECTION

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
295	Do you have central air conditioning?
296	Do you have central air conditioning?
297	Heat pump?
298	What is its cooling capacity (BTU/hr)?
299	How old is it?
300	How often did you use it last summer?
301	Do you use window or room air conditioners?
302	How many window or room air conditioners?
303	What is the cooling capacity of your first window or room unit?
304	What is the cooling capacity of your second window or room unit?
305	What is the cooling capacity of your third window or room unit?
306	For air-conditioning unit: make and model flag?
307	Second air-conditioning unit: make and model flag?
308	Third air-conditioning unit make and model flag?
309	How old is your first window or room unit?
310	How old is your second window or room unit?
311	How old is your third window or room unit?
312	How often did you use your window or room air conditioner last summer?
313	Do you use ceiling fans?
314	How many ceiling fans?
315	Do you use portable electric fans?
316	How many portable electric fans?
317	What fuel is used to heat the running water?
210	Does the water heating system serve your dwelling only or is it shared with
318	other dwellings?
319	Do you use a how water tank (separate from furnace)?
320	How many hot water heaters?
321	How water heater: make and model flag?
322	How old is your hot water heater?
323	What size is the hot water tank?
324	Does your hot water system have an add-on insulation blanket around the outside of the hot water tank?
325	Does your hot water system have insulation around the pipes?
326	Do you use a low flow shower head in your house/apartment?
327	How many low flow shower heads?
328	Do you use an attachment on hot water faucet to reduce water flow (aerator)?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
329	How many aerators?
330	Do you use any halogen light bulbs indoors or outdoors?
331	How many halogen light bulbs indoors?
332	How many halogen light bulbs outdoors?
333	Do you use any fluorescent lighting indoors or outdoors?
334	How many fluorescent light bulbs indoors?
335	How many fluorescent light bulbs outdoors?
336	How many ordinary (incandescent) light bulbs in your kitchen?
337	How many ordinary (incandescent) light bulbs in your living/dining area?
338	How many ordinary (incandescent) light bulbs in your bedrooms/closets?
339	How many ordinary (incandescent) light bulbs in your family room
340	How many ordinary (incandescent) light bulbs in your bathrooms?
341	How many ordinary (incandescent) light bulbs in your hallways?
342	How many ordinary (incandescent) light bulbs in your basement?
343	How many ordinary (incandescent) light bulbs in your attic?
	How many ordinary (incandescent) light bulbs in your in other areas inside
344	the house?
345	Total number of incandescent light bulbs indoors
346	How many incandescent light bulbs do you have in your garage?
347	How many incandescent light bulbs do you have outdoors (include spot lights)?
348	In what year was your dwelling built?
349	In what year did you or your household move in?
350	If 1992, what month did you move in?
351	To better understand the energy use in your home, please tell how many people living here are actually home during the day, on an average weekday, and please include children?
352	Do you own and use a vacation home (cottage, chalet, trailer home) in Canada?
353	How often do you usually heat it during the heating season?
354	Do you use a refrigerator?
355	What is your best estimate of the total income of all household members from all sources in 1992 before taxes and deductions?
356	Can you please tell me if you pay the bills for electricity?
357	Can you please tell me if you pay the bills for the heating oil?
358	Can you please tell me if you pay the bills for the natural gas?
359	Is natural gas available in your neighborhood?

Table A.1 Continued: Data available in SHEU

Inquiry Field	Description
360	Utility payment status
361	May we have permission to ask your energy suppliers about how much energy was used by this household in the past year?
362	Hydro supplier
363	Natural gas supplier
364	Heating oil supplier
365	Renter only, on which floor do you live
366	Renter only, how many bedrooms in your dwelling
367	Renter only, is heat included in the rent
368	Renter only, is hot water included in the rent
369	Renter only, is hot water included in the rent
370	Renter only, is cold water included in the rent
371	Renter only, is a fridge included
372	Renter only, is a stove included
373	Renter only, is a washing machine included
374	Renter only, is a clothes dryer included
375	Renter only, are other major appliances included in the rent
376	Renter only, total monthly rent

Table A.1 Continued: Data available in SHEU

Table A.2 lists the data available in the EGH database.

Inquiry Field	Description
1	Year of Construction
2	City
3	Region of Country for house
4	Weather data location
5	Floor area of house [m2]
6	Footprint of house
7	Type of furnace
8	Primary heating equipment efficiency
9	Primary heating equipment fuel type
10	Heat pump source of supply
11	Heat pump coefficient of performance
12	Domestic hot water equipment type
13	Domestic hot water equipment efficiency
14	Domestic hot water equipment fuel type
15	Domestic hot water heat pump system type
16	Domestic hot water heat pump coefficient of performance
17	Canadian solar industry association rating for solar DHW systems (MJ/yr)
	Type of house
19	Ceiling insulation RSI value
	Foundation insulation RSI value
21	Main walls insulation RSI value
22	Number of floors
23	Total number of occupants
24	House shape
25	Temperature of the basement in degrees Celsius
26	Temperature of main floor in degrees Celsius
27	House volume in m3
28	Air leakage at 50 Pa
29	Equivalent leakage area at 10 Pa
30	Ventilation type installed
31	Consumption of electricity in kWh
32	Consumption of gas in m3
33	Consumption of oil in L
34	Consumption of propane in L
35	Total energy consumption in MJ
	Estimated annual space heating energy consumption and ventilator electrical consumption (heating hour) heating energy in MJ

Table A.2: Data available in EGH

Inquiry Field	Description
37	Cost for consumption of electricity in CAD
38	Cost for consumption of gas in CAD
39	Cost for consumption of oil in CAD
40	Cost for consumption of propane in CAD
41	Total cost of energy consumption in CAD
42	Critical natural air change per hour
43	Critical total air change per hour
44	Heat loss to air leakage in MJ
45	Heat loss through foundation in MJ
46	Heat loss through ceilings in MJ
47	Heat loss through walls in MJ
48	Heat loss through windows and doors in MJ
49	Actual rating
50	Proposed primary heating equipment type
51	Proposed primary heating equipment efficiency
52	Proposed primary heating equipment fuel type
53	Proposed heat pump type
54	Proposed heat pump coefficient of performance
55	Proposed domestic hot water equipment type
56	Proposed domestic hot water equipment efficiency
57	Proposed domestic hot water fuel type
58	Proposed domestic hot water heat pump system type
59	Proposed domestic hot water heat pump system coefficient of performance
60	Proposed Canadian solar industry association rating for solar domestic hot water systems
61	Proposed ceiling RSI value
62	Proposed insulation foundation RSI value
63	Proposed insulation walls RSI value
64	Proposed consumption of electricity in kWh
65	Proposed consumption of gas in m3
66	Proposed consumption of oil in L
67	Proposed consumption of propane in L
68	Proposed total energy consumption in MJ
69	Proposed cost for consumption of electricity in CAD
70	Proposed cost for consumption of gas in CAD
71	Proposed cost for consumption of oil in CAD

Table A.2 Continued: Data available in EGH

186

Inquiry Field	Description				
72	Proposed cost for consumption of propane in CAD				
73	Proposed total energy cost in CAD				
74	Proposed air at 50 Pa				
75	Proposed heat loss to air leakage in MJ				
76	Proposed heat loss to foundation in MJ				
77	Proposed heat loss to ceiling in MJ				
78	Proposed heat loss to walls in MJ				
79	Proposed heat loss to windows and doors in MJ				
80	Proposed rating				
81	Year of Construction				
82	City				
83	Region of Country for house				
84	Weather data location				
85	Floor area of house [m2]				
86	Footprint of house				
87	Type of furnace				
88	Primary heating equipment efficiency				
89	Primary heating equipment fuel type				
90	Heat pump source of supply				
91	Heat pump coefficient of performance				
92	Domestic hot water equipment type				
93	Domestic hot water equipment efficiency				
94	Domestic hot water equipment fuel type				
95	Domestic hot water heat pump system type				
96	Domestic hot water heat pump coefficient of performance				
97	Canadian solar industry association rating for solar DHW systems (MJ/yr)				
98	Type of house				
99	Ceiling insulation RSI value				
100	Foundation insulation RSI value				
101	Main walls insulation RSI value				
102	Number of floors				
103	Total number of occupants				
104	House shape				
105	Temperature of the basement in degrees Celsius				
106	Temperature of main floor in degrees Celsius				
107	House volume in m3				

Table A.2 Continued: Data available in EGH

Inquiry Field	Description					
108	Air leakage at 50 Pa					
109	Equivalent leakage area at 10 Pa					
110	Ventilation type installed					
111	Consumption of electricity in kWh					
112	Consumption of gas in m3					
113	Consumption of oil in L					
114	Consumption of propane in L					
115	Total energy consumption in MJ					
116	Estimated annual space heating energy consumption and ventilator electrical consumption heating energy in MJ					
117	Cost for consumption of electricity in CAD					
118	Cost for consumption of gas in CAD					
119	Cost for consumption of oil in CAD					
120	Cost for consumption of propane in CAD					
121	Total cost of energy consumption in CAD					
122	Critical natural air change per hour					
123	Critical total air change per hour					
124	Heat loss to air leakage in MJ					
125	Heat loss through foundation in MJ					
126	Heat loss through ceilings in MJ					
127	Heat loss through walls in MJ					
128	Heat loss through windows and doors in MJ					
129	Actual EGH rating					
130	Decade house was built in					
131	Province					
132	Postal code of client					
133	Previous file ID					
134	Date file was created					
135	Date file was modified					
136	Annual energy consumption for the furnace in MJ					
137	Proposed annual energy consumption for the furnace in MJ					
138	Design heat loss in MJ					
139	Proposed design heat loss in MJ					
140	Furnace seasonal efficiency					
141	Proposed furnace seasonal efficiency					
142	Proposed ventilation system					
143	Proposed critical natural air change per hour					

Table A.2 Continued: Data available in EGH

Inquiry Field	Description				
	Description				
144	Heat loss to exposed floor in MJ				
145	Exposed floor insulation RSI value				
146	Proposed exposed floor insulation RSI value				
147	Annual energy consumption for furnace in MJ				
148	Design heat loss in MJ				
149	Furnace seasonal efficiency				
150	Heat loss to exposed floor in MJ				
151	Exposed floor insulation RSI values				
152	Proposed heat loss to exposed floor in MJ				
153	Proposed total critical air change per hour				
154	Proposed furnace seasonal efficiency				
155	Furnace seasonal efficiency				
156	Furnace seasonal efficiency				
157	Consumption of wood in tonnes				
158	Cost for consumption of wood in CAD				
159	Proposed consumption of wood in tonnes				
160	Proposed cost for consumption of wood in CAD				
161	Consumption of wood in tonnes				
162	Cost for consumption of wood in CAD				
163	Proposed consumption of wood in tonnes				
164	Proposed cost for consumption of wood in CAD				
165	Homeowner mailing city for incentive				
166	Homeowner mailing province for incentive				
167	Type of housing				

Table A.2 Continued: Data available in EGH

Table A.3 list the data available in the NHS database.

Inquiry Field	Description				
1	What is the heating equipment that heats most of the house?				
2	What is the efficiency rating of the heating equipment?				
3	Do you have a heat pump?				
4	Is your heat pump air source or ground source?				
5	Does your house use a back-up furnace with your heat pump?				
6	What fuel does the back-up furnace use?				
7	Some heating systems have additional features, does yours have?				
7a	Central electronic air filter				
7b	Central humidifier				
7c	Central dehumidifier				
8	Do you have a wood burning fireplace in your home?				
9	Does it have glass doors?				
10	Does it have a fireplace insert?				
	About how often do you use the wood burning fireplace during the heating				
- 11	season?				
12	Do you have a fireplace(s) in your home other than a wood burning fireplace?				
12a	What area(s) is it heating?				
12b	What fuel is used?				
13	Do you use a wood stove?				
13a	What area is it heating?				
14	How many cords of wood do you use in an average year?				
15	What type of cord is it?				
16	Aside from your main heating system, do you use any of the following?				
16a	Electric baseboard heaters				
16b	Portable heaters				
16c	Wood stove				
16d	Fireplace (not wood burning)				
16e	Other supplementary heaters				
17	During the last heating season, would you say you used your supplementary heaters?				
18	Do you use a programmable thermostat with at timer to change the temperature in your house?				
19	During the heating season, at what temperature do you maintain most of your home?				
19a	Daytime (6am-6pm)				
19b	Evening (6pm-10pm)				

Table A.3: Data available in NHS

Inquiry Field	Description			
19c	Over night (10pm-6am)			
20	How many storeys, excluding the basement, does your house have?			
21	What are most of the exterior walls of your house made of?			
22	What percentage of your exterior walls are covered with the surface mentioned in question 21?			
23	What other material, if any, is used on the exterior walls?			
24	Looking at the main structure of your home, is it mainly?			
25	What is the r value of the insulation in your outside walls?			
25a	What is the overall thickness of a typical outside wall in your house?			
25b	If your house is primarily a wood or steel frame house, what is the size of framing in the outside walls?			
26	What type of insulation do you have in your outside walls?			
27	Approximately, what is the total heated living area of your house excluding basement and garage?			
28	What is the combined square footage of your basement and/or crawl space?			
29	Looking at the layout of your house, about what percentage of the ground floor living area is over?			
29a	If any of your living area is slab on grade, does it have?			
30	How are the basement and exterior basement walls insulated?			
31	What percentage of the basement wall area is insulated?			
32	What type of insulation, if any, is in the basement walls?			
33	And, on average, how thick is the insulation in your basement walls?			
34	About what percentage of the basement wall area is above grade?			
35	Is the basement usually heated?			
36	About what percentage of the basement area is heated?			
37	About what percentage of your basement is finished?			
38	Do you have a separate thermostat in your basement?			
39	During the heating season, what would you say is the average temperature of the heated portion of your basement and the unheated portion?			
40	Do you have the crawl space?			
41	About what percentage of the crawl space area is heated?			
42	Do you have a separate thermostat in your crawl space?			
43	How is the crawl space insulated?			
44	What percentage of the wall area of the crawl space is insulated?			
45	What type of insulation, if any, is in the crawl space walls?			
46	On average, how thick is the insulation, if any, in the crawl space?			

Table A.3 Continued: Data available in NHS

Inquiry Field					
47	What type of insulation, if any, is in the crawl space ceiling?				
48	On average, how thick is the insulation, if any, in the crawl space ceiling?				
49	About what percentage of the crawl space area is above grade?				
50	Does your house have a garage?				
51	Is the garage heated?				
52	Is the garage attached to your home?				
53	Is the garage under a heated room or part of your basement?				
	In some garages the vehicle entry door is insulated with fibreglass or foam board attached to the inside of the door. Does your garage have an insulated vehicle entry door?				
55	Does your house have an attic?				
56	What type of insulation do you have over the ceilings in your home?				
57	And on average, how thick is the insulation above your ceilings?				
58	What direction the front of your house faces?				
59	How many windows on the front of your house?				
60	How many patio doors, skylights, or bay windows on the front of your house?				
61	Not including any patio doors, skylights, or bay windows, how many windows of each of the following size categories are on the front of your house?				
61a	In the basement				
61b	In the main floors				
62	How many windows on the back of your house?				
63	How many patio doors, skylights, or bay windows on the back of your house?				
64	Not including any patio doors, skylights, or bay windows, how many windows of each of the following size categories are on the back of your house?				
	In the basement				
	In the main floors				
	How many windows on the left of your house?				
66	How many patio doors, skylights, or bay windows on the left of your house?				
	Not including any patio doors, skylights, or bay windows, how many windows of each of the following size categories are on the left of your house?				
67a	In the basement				
67b	In the main floors				
68	How many windows on the right of your house?				
69	How many patio doors, skylights, or bay windows on the right of your house?				
	Not including any patio doors, skylights, or bay windows, how many windows of each of the following size categories are on the right of your house?				

Table A.3 Continued: Data available in NHS

Inquiry Field					
70a	In the basement?				
70b	In the main floors?				
71	In the main floors, how many windows of each of the following types do you have?				
72	In the basement area, how many windows of each of the following types do you have?				
73	Do you feel there are any air leaks or drafts around your windows?				
	Do you have a heated solarium or sunroom?				
75	Do you have a central ventilation system, also known as an air heat exchanger?				
76	Do you have central air conditioning in your house?				
77	How often did you use your central air conditioner last summer?				
78	Do you use window or room air conditioners?				
79	Last summer, how often did you use your first window or room air conditioner?				
80	What fuel is used to heat the running water in your home?				
81	Is your space heating shared with other dwellings?				
81a	Is your water heating system shared with other dwellings?				
82	Do you use hot water tank separate from the furnace?				
83	What size is the hot water tank?				
84	Does your hot water system have?				
85	Are any of the following energy savings devices used in your home?				
86	If your house lot has a pool, do you use a pool heater?				
87	Do you have a hot tub/Jacuzzi/whirlpool?				
88	Do you have a sauna?				
89	Is your home classified as an R2000 home?				
90	Billing information?				
91	Builder information?				
92	Which category best describes your total household income?				
93	What is the highest level of formal education attained by any of the adults in your household?				
	How many people live in your house who are?				
	In what month and year did you move into your house?				
	Is this your only home or do you also have another residence?				
	How many weeks during each season is the house usually vacant?				
	And during the weekdays, throughout the year, is someone usually home during the daytime?				

Table A.3 Continued: Data available in NHS

Appendix B Averaging Techniques

Although the SHEU database is very comprehensive, there were cases where data was missing or out of the range expected making it invalid. In this case, the sum of the weights had to be adjusted to reflect missing or invalid data. Calculating the average value of an incomplete dataset is illustrated below.

House #	Weighting Factor	Efficiency	Area (ft ²)
1	70	0.9	300
2	200	0.8	700
3	4700	0.85	data missing
4	850	0.77	600
5	962	0.69	1100
6	1011	0.92	1300

Table B.1: Sample Data Set for Averaging Example

In the above sample dataset, the sum of the weights is:

 $\sum W_{SHEU} = 7793$

The weighted average for efficiency, or a complete dataset is calculated using the following equation:

$$\bar{\eta} = \frac{(70 \times 0.9) + (200 \times 0.8) + (4700 \times 0.85) + (850 \times 0.77) + (962 \times 0.69) + (1011 \times 0.92)}{7793}$$

 $\eta = 0.83$

In order to calculate the average area – an incomplete dataset, the following equation is used:

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

There were several variables in the SHEU database that could not be handled using a weighted average approach. The average of indicator variables, variables that represented qualitative rather than quantitative characteristics, had to be determined by using the method explained below. First is an example of a case where the standard weighted averaged approach does not yield a meaningful result.

Assume that Table B.2 is the part of the SHEU database that describes the domestic hot water fuel type. Where the indicator variable 1 represents electricity, 2 represents oil, 3 represents natural gas and 4 represents propane.

House #	DHW Fuel	Weights	Individual weighted value
1	1	1023	0.075
2	3	998	0.219
3	1	566	0.041
4	1	3902	0.285
5	1	1408	0.103
6	3	924	0.203
7	3	1789	0.392
8	3	1968	0.432
9	1	1098	0.080
Sum		13676	-
Weighted			2
Average			2

 Table B.2: Example Data Set for Indicator Variable Example

Notice that although not one house uses oil (2) as the DHW fuel, the results of the weighted averaging procedure yield oil (2) as the DHW fuel.

In cases where indicator variables were used to define the test case house characteristics, a different method was employed. Rather than taking a weighted average, the data was sorted into individual categories, in this example, into the 4 fuel categories and then their associated weights were summed to see which fuel was most representative. This fuel then became the DHW fuel in the test case house. Below is a brief example illustrating the procedure.

The data in Table B.2 was sorted into categories and the sum of the respective weights calculated as shown in Table B.3.

			1 A A A A A A A A A A A A A A A A A A A	· · · · · · · · · · · · · · · · · · ·					
DHW Fuel	Weight	Electricity	Weight	Oil	Weight	Natural Gas	Weight	Propane	Weight
1	1023	1	1023	-	-	3	998	-	-
1	566	1	566			3	924		
1	3902	1	3902			3	1789		
1	1408	1	1408			3	1968		
. 1	1098	1	1098						
3	998								
3	924								
3	1789	-							
3	1968	н. -							
Sum of									
weights			7997		0		5679		0

 Table B.3: Example Data Set for Indicator Variable Example

From the sum of weights, it can be concluded that the most representative DHW fuel is electricity (1). This approach was used for averaging all indicator variables, as listed in Tables 5.15 - 5.17.

For the number of doors and windows in each test case house, one further step was employed. The sum of the individual weights for each category (e.g. the number of 2 pane windows) was divided by the total sum of the weights in the group. In order for a specific type of window or door to be included in the test case house, more than 50% (based on weights) of the houses had to have this type of window or door. This limit was imposed to avoid getting a cumulative effect rather than an averaged representation.

Appendix C

Test Case House Descriptions

Tables C.1 - C.31 list the construction, equipment, infiltration, and temperature set point data for the 30 test case houses.

South
116
1
3 - wood
full basement
1.75
1.82
3.91
0.26
full attic
wood
furnace w/ cont. pilot
77.3
natural gas
180
conventional w/ pilot
natural gas
51.1
whole basement heated
3
20
21
18
8.07

 Table C.1: Test Case House 1 – Specifications

Number of 3 Pane Large	0
Number of 3 Pane Regular	0
Number of 2 Pane Large	1
Number of 2 Pane Regular	7
Number of 1 Pane Large	3
Number of 1 Pane Regular	11
Number of Front Basement	0
Number of Back Basement	1
Number of Left Basement	1
Number of Right Basement	1
Number of Front Main	6
Number of Back Main	7
Number of Left Main	3
Number of Right Main	3
Number of Windows in Basement	3
Number of Windows in Main	19

Table C.2: Test Case House 1 – Window Data

House Orientation	South
House Size (m ²)	163
Number of Storeys	2
Number and Construction of Doors	2 - metal, 2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	2.06
Foundation RSI (Km ² /W)	3.49
Ceiling RSI (Km ² /W)	4.76
Roof RSI (Km ² /W)	0.26
Attic	full attic
External Wall Material	vinyl siding
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	77.7
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	50.6
Basement Heating	whole basement heated
Number of Occupants	4
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	6.76
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	13
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	1
Number of Front Main Windows	4
Number of Back Main Windows	5
Number of Left Main Windows	2
Number of Right Main Windows	2
Number of Windows in Basement	2
Number of Windows in Main	13

 Table C.3: Test Case House 2 – Specifications and Window Data

House Orientation	South
House Size (m^2)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.55
Foundation RSI (Km ² /W)	2.37
Ceiling RSI (Km ² /W)	3.45
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	stucco
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency	Turnace w/ cont. priot
(%)	76.4
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	0.55
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	19
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	10.18
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	3
Number of 2 Pane Regular Windows	7
Number of 1 Pane Large Windows	1
Number of 1 Pane Regular Windows	5
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	4
Number of Back Main Windows	5
Number of Left Main Windows	2
Number of Right Main Windows	2
Number of Windows in Basement	3
Number of Windows in Main	13

Table C.4: Test Case House 3 – Specifications and Window Data

House Orientation	North
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.91
Foundation RSI (Km ² /W)	1.25
Ceiling RSI (Km ² /W)	4.23
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	stucco
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	74.9
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	55
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	4.32
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	6
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	1
Number of Front Main Windows	2
Number of Back Main Windows	2
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	6

 Table C.5: Test Case House 4 – Specifications and Window Data

House Orientation	North
House Size (m ²)	163
Number of Storeys	1
Number and Construction of Doors	2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	2.35
Foundation RSI (Km ² /W)	1.86
Ceiling RSI (Km ² /W)	5.01
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	vinyl siding
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	76.2
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	55.1
Basement Heating	whole basement
Number of Occupants	4
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	4.28
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	9
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	3
Number of Back Main Windows	3
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	3
Number of Windows in Main	8

Table C.6: Test Case House 5 – Specifications and Window Data

House Orientation	North
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.69
Foundation RSI (Km ² /W)	0.95
Ceiling RSI (Km ² /W)	4.19
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	stucco
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	74.9
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	54.8
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	6.04
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	5
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	1
Number of Front Main Windows	1
Number of Back Main Windows	2
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	5

Table C.7: Test Case House 6 – Specifications and Window Data

House Size (m²)116Number of Storeys1Number and Construction of Doors2 - woodBasementfull basementMain Wall RSI (Km²/W)1.89Foundation RSI (Km²/W)1.4Ceiling RSI (Km²/W)4.67Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 2 Pane Large Windows0Number of Back Basement Windows0Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Main Windows1	House Orientation	East
Number of Storeys1Number and Construction of Doors2 - woodBasementfull basementMain Wall RSI (Km²/W)1.89Foundation RSI (Km²/W)1.4Ceiling RSI (Km²/W)4.67Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Efficit Basement Windows1Number of Left Basement Windows1Number of Right Main Windows1Number of Right Main Windows1		
Number and Construction of Doors2 - woodBasementfull basementMain Wall RSI (Km²/W)1.89Foundation RSI (Km²/W)1.4Ceiling RSI (Km²/W)4.67Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Regular Windows0Number of I Pane Regular Windows0Number of Left Basement Windows1Number of Left Basement Windows1Number of Right Main Windows1Number of Right Main Windows1		
Basementfull basementMain Wall RSI (Km²/W)1.89Foundation RSI (Km²/W)1.4Ceiling RSI (Km²/W)4.67Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Regular Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Effic Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1 <tr< td=""><td></td><td>-</td></tr<>		-
Main Wall RSI (Km²/W)1.89Foundation RSI (Km²/W)1.4Ceiling RSI (Km²/W)4.67Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 2 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of Efficit Basement Windows1Number of Left Basement Windows1Number of Left Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1<		
Foundation RSI (Km²/W)1.4Ceiling RSI (Km²/W)4.67Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows1Number of Right Basement Windows1Number of Front Basement Windows1Number of Front Main Windows1Number of Front Main Windows1Number of Front Main Windows1Number of Left Main Windows1Number of Left Main Windows1		
Ceiling RSI (Km²/W)4.67Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows1Number of Right Main Windows1	$\frac{1}{1} \frac{1}{1} \frac{1}$	
Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Regular Windows0Number of 1 Pane Large Windows0Number of Front Basement Windows1Number of Efficiency Windows1Number of Front Basement Windows1Number of Left Basement Windows1Number of Right Main Windows1	$\frac{Foundation KSI(Km / W)}{Calling DSI(Km^2(W))}$	
AtticyesExternal Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of 5 Pane Regular Windows0Number of 7 Pane Regular Windows1Number of Front Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Right Main Windows1Number of Right Main Windows1		
External Wall MaterialwoodSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows1Number of Effort Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Right Main Windows1Number of Right Main Windows1		
Space Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows1Number of Front Main Windows1Number of Right Main Windows1		
Space Heating Equipment Efficiency (%)73.1Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Explanate Windows0Number of Sake Basement Windows0Number of Sake Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows1Number of Front Main Windows1Number of Front Main Windows1Number of Back Main Windows1Number of Left Main Windows1		
Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Equipment Typenatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Regular Windows0Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of Front Basement Windows0Number of Effect Basement Windows1Number of Back Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Main Windows1Number of Back Main Windows1Number of Back Main Windows1		· · · · · · · · · · · · · · · · · · ·
DHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 2 Pane Regular Windows0Number of 2 Pane Regular Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Kegular Windows0Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows1Number of Back Main Windows2Number of Back Main Windows1Number of Back Main Windows1Number of Right Main Windows1		
DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of Front Basement Windows0Number of Effort Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows2Number of Right Main Windows1Number of Right Main Windows1		
DHW Fuelnatural gasDHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 5 Right Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Main Windows1Number of Right Main Windows1		
DHW Efficiency (%)54.6Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows0Number of 1 Pane Large Windows6Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows1Number of Front Main Windows1Number of Right Main Windows1Number of Right Main Windows1		
Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows6Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Front Main Windows1Number of Back Main Windows1Number of Back Main Windows1Number of Right Main Windows1		
Number of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Regular Windows0Number of Front Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Front Main Windows2Number of Back Main Windows1Number of Left Main Windows1Number of Right Main Windows1		
Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows1Number of Front Main Windows2Number of Back Main Windows1Number of Left Main Windows1Number of Right Main Windows1		whole basement
Z0Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows2Number of Back Main Windows1Number of Back Main Windows1Number of Back Main Windows1Number of Left Main Windows1Number of Right Main Windows1		3
Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Large Windows6Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows2Number of Back Main Windows1Number of Back Main Windows1Number of Left Main Windows1	Temperature Set 1: 6AM-6PM (°C)	20
ACH @ 50 PA4.09Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows0Number of Right Basement Windows2Number of Back Main Windows1Number of Back Main Windows1Number of Left Main Windows1Number of Left Main Windows1	Temperature Set 2: 6PM-10PM (°C)	20
Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Right Basement Windows1Number of Right Main Windows2Number of Back Main Windows1Number of Left Main Windows1	Temperature Set 3: 10PM-6AM (°C)	19
Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows2Number of Front Main Windows1Number of Back Main Windows1Number of Left Main Windows1Number of Right Main Windows1	ACH @ 50 PA	4.09
Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows2Number of Back Main Windows1Number of Back Main Windows1Number of Left Main Windows1Number of Left Main Windows1	Number of 3 Pane Large Windows	0
Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows1Number of Front Main Windows2Number of Back Main Windows1Number of Left Main Windows1Number of Right Main Windows1	Number of 3 Pane Regular Windows	0
Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows1Number of Front Main Windows2Number of Back Main Windows1Number of Left Main Windows1Number of Right Main Windows1	Number of 2 Pane Large Windows	1
Number of 1 Pane Large Windows0Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows1Number of Back Main Windows2Number of Left Main Windows1Number of Right Main Windows1		6
Number of 1 Pane Regular Windows0Number of Front Basement Windows0Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows1Number of Back Main Windows2Number of Left Main Windows1Number of Right Main Windows1		0
Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows1Number of Back Main Windows2Number of Left Main Windows1Number of Right Main Windows1		0
Number of Left Basement Windows1Number of Right Basement Windows0Number of Front Main Windows1Number of Back Main Windows2Number of Left Main Windows1Number of Right Main Windows1	Number of Front Basement Windows	0
Number of Right Basement Windows0Number of Front Main Windows1Number of Back Main Windows2Number of Left Main Windows1Number of Right Main Windows1	Number of Back Basement Windows	1
Number of Right Basement Windows0Number of Front Main Windows1Number of Back Main Windows2Number of Left Main Windows1Number of Right Main Windows1	Number of Left Basement Windows	1
Number of Front Main Windows1Number of Back Main Windows2Number of Left Main Windows1Number of Right Main Windows1		0
Number of Left Main Windows1Number of Right Main Windows1		1
Number of Right Main Windows 1	Number of Back Main Windows	2
	Number of Left Main Windows	1
	Number of Right Main Windows	1
	Number of Windows in Basement	2
Number of Windows in Main 5	Number of Windows in Main	5

Table C.8: Test Case House 7 – Specifications and Window Data

House Orientation	East
House Size (m ²)	163
Number of Storeys	1
Number and Construction of Doors	2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	2.66
Foundation RSI (Km ² /W)	2.13
Ceiling RSI (Km ² /W)	6
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	75
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	54.8
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	3.21
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	9
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	0
Number of Front Main Windows	2
Number of Back Main Windows	4
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	8

Table C.9: Test Case House 8 – Specifications and Window Data

House Orientation	East
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood
Basement	full basement
	1.76
Main Wall RSI (Km^2/W)	1.70
Foundation RSI (Km ² /W)	
Ceiling RSI (Km^2/W)	4.18
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	73.1
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	54.6
Basement Heating	whole basement
Number of Occupants	2
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	5.57
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	6
Number of 1 Pane Large Windows	1
Number of 1 Pane Regular Windows	7
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	3
Number of Back Main Windows	6
Number of Left Main Windows	1
Number of Right Main Windows	2
Number of Windows in Basement	3
	5

Table C.10: Test Case House 9 – Specifications and Window Data

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood, 2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	1.84
Foundation RSI (Km ² /W)	1.27
Ceiling RSI (Km ² /W)	4.64
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	stucco
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	78
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	54.3
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	3.5
Number of 3 Pane Large Windows	1
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	5
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	0
Number of Front Main Windows	2
Number of Back Main Windows	2
Number of Left Main Windows	<u>· 1</u>
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	6

 Table C.11: Test Case House 10 – Specifications and Window Data

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 -wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.43
Foundation RSI (Km ² /W)	1.13
Ceiling RSI (Km ² /W)	4.04
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	stucco
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	78
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	58.2
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	21
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	20
ACH @ 50 PA	5.34
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	5
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	. 7
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	3
Number of Back Main Windows	4
Number of Left Main Windows	2
Number of Right Main Windows	1
Number of Windows in Basement	3
Number of Windows in Main	10

 Table C.12: Test Case House 11 – Specifications and Window Data

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	3 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.41
Foundation RSI (Km ² /W)	0.85
Ceiling RSI (Km ² /W)	3.29
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	78
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	59.2
Basement Heating	whole basement
Number of Occupants	2
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	9
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	5
Number of 1 Pane Large Windows	1
Number of 1 Pane Regular Windows	7
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	4
Number of Back Main Windows	4
Number of Left Main Windows	2
Number of Right Main Windows	1
Number of Windows in Basement	3
Number of Windows in Main	11

 Table C.13: Test Case House 12 – Specifications and Window Data

House Orientation	South
House Size (m ²)	163
Number of Storeys	2
Number and Construction of Doors	2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	2.28
Foundation RSI (Km ² /W)	1.79
Ceiling RSI (Km ² /W)	5.06
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	brick
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	82.4
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	55.6
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	4.56
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	9
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	0
Number of Front Main Windows	4
Number of Back Main Windows	3
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	9

 Table C.14: Test Case House 13 – Specifications and Window Data

House Size (m²)116Number of Storeys2Number and Construction of Doors3 - woodBasementfull basementMain Wall RSI (Km²/W)1.13Foundation RSI (Km²/W)0.97Ceiling RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of Pront Basement Windows1Number of Front Basement Windows1Number of Front Basement Windows1Number of Front Main Windows6Number of Front Main Windows6Number of Right Basement Windows1Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2	House Orientation	South
Number of Storeys2Number and Construction of Doors3 - woodBasementfull basementMain Wall RSI (Km²/W)1.13Foundation RSI (Km²/W)0.97Ceiling RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows1Number of Large Windows1Number of Eront Basement Windows1Number of Left Basement Windows1Number of Back Basement Windows1Number of Back Main Windows6Number of Back Main Windows2Number of Right Basement Windows1Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2		
Number and Construction of Doors3 - woodBasementfull basementMain Wall RSI (Km²/W)1.13Foundation RSI (Km²/W)0.97Ceiling RSI (Km²/W)2.86Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Fficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Regular Windows1Number of 1 Pane Large Windows1Number of I Pane Regular Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2		
Basementfull basementMain Wall RSI (Km²/W)1.13Foundation RSI (Km²/W)0.97Ceiling RSI (Km²/W)2.86Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Fuelnatural gasDHW Fuel0.20Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of Left Basement Windows1Number of Left Basement Windows1Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2		
Main Wall RSI (Km²/W)1.13Foundation RSI (Km²/W)0.97Ceiling RSI (Km²/W)2.86Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Left Basement Windows1Number of Left Basement Windows1Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2		
Foundation RSI (Km²/W)0.97Ceiling RSI (Km²/W)2.86Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelstartal gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Left Basement Windows1Number of Left Basement Windows1Number of Left Basement Windows1Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Windows in Basement4 <td></td> <td></td>		
Ceiling RSI (Km²/W)2.86Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Right Basement Windows2Number of Right Basement Windows2Number of Right Basement Windows2Number of Right Main Windows2Number of Right Main Windows2		
Roof RSI (Km²/W)0.26AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Front Basement Windows1Number of Right Basement Windows2Number of I Left Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2		
AtticyesExternal Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows6Number of Front Main Windows6Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Windows in Basement4	$\frac{\text{Celling RSI}(\text{Km / W})}{\text{Description}}$	
External Wall MaterialbrickSpace Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows1Number of 5 Pane Regular Windows1Number of 6 Pront Basement Windows1Number of 7 Pane Regular Windows1Number of 8 Rasement Windows1Number of 1 Pane Regular Windows1Number of Right Basement Windows1Number of Right Basement Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Windows in Basement4 </td <td></td> <td></td>		
Space Heating Equipment Typefurnace w/ cont. pilotSpace Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Effort Basement Windows1Number of Cleft Basement Windows1Number of Cleft Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows2Number of Front Main Windows2Number of Fort Main Windows2Number of Fort Main Windows2Number of Left Main Windows2Number of Left Main Windows2Number of Cleft Main Windows2Number of Kight Main Windows2		
Space Heating Equipment Efficiency (%)81.6Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Regular Windows6Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Left Basement Windows1Number of Front Main Windows6Number of Front Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Kight Main Windows2Number of Windows in Basement4		
Space Heating Fuel Typenatural gasDHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 2 Pane Large Windows1Number of 1 Pane Large Windows1Number of 1 Pane Large Windows12Number of 1 Pane Regular Windows12Number of Effort Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows1Number of Back Main Windows2Number of I Pane Large Windows1Number of Left Main Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Back Main Windows2Number of I Pane I Mindows2Number of I Pane I Mindows2Number of I Pane I Mindows2Number of I Pane I Mindows3Number of I Pane I Mindows3Number of I Pane I Mindows3Number of I Pane I Mindows3 <td< td=""><td></td><td></td></td<>		
DHW Tank Size (L)180DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows1Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows2Number of Back Main Windows2Number of Back Main Windows2Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Windows in Basement4		
DHW Equipment Typeconventional w/ pilotDHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 1 Pane Regular Windows6Number of 1 Pane Regular Windows12Number of 1 Pane Large Windows12Number of 1 Pane Regular Windows1Number of 1 Pane Kegular Windows1Number of 1 Pane Kegular Windows1Number of 1 Pane Kegular Windows1Number of Back Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Back Main Windows6Number of Back Main Windows2Number of Left Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows2Number of Windows in Basement4		
DHW Fuelnatural gasDHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows1Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Effect Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows6Number of Right Main Windows2Number of Right Main Windows2Number of Right Main Windows4	DHW Tank Size (L)	
DHW Efficiency (%)57.4Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows6Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows6Number of Right Basement Windows1Number of Right Main Windows2Number of Back Main Windows2Number of Back Main Windows4		conventional w/ pilot
Basement Heatingwhole basementNumber of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows12Number of 1 Pane Large Windows12Number of 5 Pront Basement Windows1Number of 6 Right Basement Windows1Number of 7 Right Basement Windows6Number of Right Main Windows6Number of Right Main Windows2Number of Back Main Windows4	DHW Fuel	natural gas
Number of Occupants3Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows0Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Front Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows6Number of Front Main Windows6Number of Front Main Windows6Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows4	DHW Efficiency (%)	57.4
Temperature Set 1: 6AM-6PM (°C)20Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows0Number of 2 Pane Large Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Front Main Windows6Number of Left Main Windows2Number of Back Main Windows4	Basement Heating	whole basement
Z0Temperature Set 2: 6PM-10PM (°C)20Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Regular Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows1Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows6Number of Back Main Windows6Number of Back Main Windows2Number of Left Main Windows2Number of Right Main Windows4	Number of Occupants	3
Temperature Set 3: 10PM-6AM (°C)19ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Regular Windows1Number of 1 Pane Large Windows12Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows6Number of Back Main Windows6Number of Back Main Windows2Number of Back Main Windows4		20
ACH @ 50 PA11.48Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Large Windows6Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows6Number of Front Main Windows6Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows4	Temperature Set 2: 6PM-10PM (°C)	20
Number of 3 Pane Large Windows0Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Large Windows12Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows6Number of Front Main Windows6Number of Back Main Windows2Number of Back Main Windows2Number of Right Main Windows4	Temperature Set 3: 10PM-6AM (°C)	19
Number of 3 Pane Regular Windows0Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of 1 Pane Regular Windows1Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows4	ACH @ 50 PA	11.48
Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows4	Number of 3 Pane Large Windows	0
Number of 2 Pane Large Windows1Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows4	Number of 3 Pane Regular Windows	0
Number of 2 Pane Regular Windows6Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Back Main Windows2Number of Right Main Windows2Number of Right Main Windows4		1
Number of 1 Pane Large Windows1Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Right Basement Windows6Number of Front Main Windows6Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Right Main Windows4		6
Number of 1 Pane Regular Windows12Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Right Main Windows4		1
Number of Front Basement Windows1Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Right Main Windows4		12
Number of Back Basement Windows1Number of Left Basement Windows1Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Right Main Windows4		1
Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Right Main Windows4		1
Number of Right Basement Windows1Number of Front Main Windows6Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Right Main Windows4	Number of Left Basement Windows	1
Number of Front Main Windows6Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Windows in Basement4		1
Number of Back Main Windows6Number of Left Main Windows2Number of Right Main Windows2Number of Windows in Basement4		
Number of Left Main Windows2Number of Right Main Windows2Number of Windows in Basement4		6
Number of Right Main Windows2Number of Windows in Basement4		2
Number of Windows in Basement 4		
	Number of Windows in Main	16

 Table C.15: Test Case House 14 – Specifications and Window Data

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.4
Foundation RSI (Km ² /W)	1.1
Ceiling RSI (Km ² /W)	3.58
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	brick
Space Heating Equipment Type	furnace w/ cont. pilot
Space Heating Equipment Efficiency (%)	81.5
Space Heating Fuel Type	natural gas
DHW Tank Size (L)	180
DHW Equipment Type	conventional w/ pilot
DHW Fuel	natural gas
DHW Efficiency (%)	57.1
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	21
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	8.33
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	5
Number of 1 Pane Large Windows	1
Number of 1 Pane Regular Windows	7
Number of Front Basement Windows	0
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	5
Number of Back Main Windows	4
Number of Left Main Windows	2
Number of Right Main Windows	1
Number of Windows in Basement	3
Number of Windows in Main	12

 Table C.16: Test Case House 15 – Specifications and Window Data

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood, 1 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	1.97
Foundation RSI (Km ² /W)	1.3
Ceiling RSI (Km ² /W)	3.92
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	brick
Space Heating Equipment Type	furnace
Space Heating Equipment Efficiency (%)	73.9
Space Heating Fuel Type	oil
DHW Tank Size (L)	230
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	74.3
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	5.92
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	7
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	0
Number of Back Basement Windows	. 1
Number of Left Basement Windows	1
Number of Right Basement Windows	0
Number of Front Main Windows	2
Number of Back Main Windows	2
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	6

 Table C.17: Test Case House 16 – Specifications and Window Data

House Orientation	South
House Size (m ²)	116
Number of Storeys	2
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.59
Foundation RSI (Km ² /W)	0.74
Ceiling RSI (Km ² /W)	3.09
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	aluminium siding
Space Heating Equipment Type	furnace
Space Heating Equipment Efficiency (%)	74.5
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	77.3
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	21
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	20
ACH @ 50 PA	10.31
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	4
Number of 2 Pane Regular Windows	9
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	7
Number of Front Basement Windows	1
Number of Back Basement Windows	2
Number of Left Basement Windows	2
Number of Right Basement Windows	1
Number of Front Main Windows	6
Number of Back Main Windows	5
Number of Left Main Windows	2
Number of Right Main Windows	1
Number of Windows in Basement	6
Number of Windows in Main	14

Table C.18: Test Case House 17 – Specifications and Window Data

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood, 2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	1.69
Foundation RSI (Km ² /W)	0.91
Ceiling RSI (Km ² /W)	3.47
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	brick
Space Heating Equipment Type	furnace
Space Heating Equipment Efficiency (%)	73.7
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	76.2
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	7.5
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	10
Number of 1 Pane Large Windows	2
Number of 1 Pane Regular Windows	9
Number of Front Basement Windows	1
Number of Back Basement Windows	2
Number of Left Basement Windows	2
Number of Right Basement Windows	1
Number of Front Main Windows	7
Number of Back Main Windows	5
Number of Left Main Windows	2
Number of Right Main Windows	2
Number of Windows in Basement	6
Number of Windows in Main	16

 Table C.19: Test Case House 18 – Specifications and Window Data

House Orientation	East
House Size (m ²)	116
Number of Storeys	1.5
Number and Construction of Doors	3 - wood
Basement	full basement
Main Wall RSI (Km²/W)	1.22
Foundation RSI (Km ² /W)	0.33
Ceiling RSI (Km ² /W)	2.28
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace
Space Heating Equipment Efficiency (%)	73.8
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	78.3
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	21
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	11.72
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	7
Number of 1 Pane Large Windows	2
Number of 1 Pane Regular Windows	10
Number of Front Basement Windows	1
Number of Back Basement Windows	2
Number of Left Basement Windows	1
Number of Right Basement Windows	1 .
Number of Front Main Windows	6
Number of Back Main Windows	5
Number of Left Main Windows	2
Number of Right Main Windows	2
Number of Windows in Basement	5

 Table C.20: Test Case House 19 – Specifications and Window Data

House Orientation	East
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.83
Foundation RSI (Km ² /W)	0.53
Ceiling RSI (Km ² /W)	3.62
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace
Space Heating Equipment Efficiency (%)	73.1
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	76.9
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	6.31
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	8
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	1
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	0
Number of Front Main Windows	3
Number of Back Main Windows	2
Number of Left Main Windows	1
	1
Number of Right Main Windows	
Number of Windows in Basement	3

Table C.21: Test Case House 20 – Specifications and Window Data

House Orientation	East
House Size (m ²)	116
Number of Storeys	1.5
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.52
Foundation RSI (Km ² /W)	1
Ceiling RSI (Km ² /W)	2.84
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	vinyl siding
Space Heating Equipment Type	furnace
Space Heating Equipment Efficiency (%)	73.7
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	78
Basement Heating	whole basement
Number of Occupants	2
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	19
ACH @ 50 PA	7.97
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	3
Number of 2 Pane Regular Windows	6
Number of 1 Pane Large Windows	1
Number of 1 Pane Regular Windows	8
Number of Front Basement Windows	1
	2
Number of Back Basement Windows	4
Number of Back Basement Windows Number of Left Basement Windows	1
Number of Left Basement Windows	1 1 5
Number of Left Basement Windows Number of Right Basement Windows	1
Number of Left Basement Windows Number of Right Basement Windows Number of Front Main Windows	1 1 5
Number of Left Basement Windows Number of Right Basement Windows Number of Front Main Windows Number of Back Main Windows	1 1 5 5 1 2
Number of Left Basement Windows Number of Right Basement Windows Number of Front Main Windows Number of Back Main Windows Number of Left Main Windows	$ \begin{array}{c c} 1 \\ 1 \\ 5 \\ 5 \\ 1 \end{array} $

 Table C.22: Test Case House 21 – Specifications and Window Data

House Orientation	North
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood, 2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	1.84
Foundation RSI (Km ² /W)	0.83
Ceiling RSI (Km ² /W)	3.19
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ flame ret. Head
Space Heating Equipment Efficiency (%)	78.7
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	Oil
DHW Efficiency (%)	56
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	6.84
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	8
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	1
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	1
Number of Front Main Windows	3
Number of Back Main Windows	2
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	3
Number of Windows in Main	7

 Table C.23: Test Case House 22 – Specifications and Window Data

House OrientationNorthHouse Size (m²)116Number of Storeys1.5Number and Construction of Doors2 - wood	
Number of Storeys1.5Number and Construction of Doors2 - wood	
Number and Construction of Doors 2 - wood	
Basement full basement	
Main Wall RSI (Km ² /W) 1.19	
Foundation RSI (Km ² /W) 0.3	
Ceiling RSI (Km ² /W) 1.82	
Roof RSI (Km ² /W) 0.26	
Attic yes	
External Wall Material wood	
Space Heating Equipment Type furnace w/ flame ret. H	ead
Space Heating Equipment Efficiency (%) 78.5	
Space Heating Fuel Type Oil	
DHW Tank Size (L) 180	
DHW Equipment Type conventional	
DHW Fuel Oil	
DHW Efficiency (%) 61.2	
Basement Heating whole basement	
Number of Occupants 3	
Temperature Set 1: 6AM-6PM (°C)20	
Temperature Set 2: 6PM-10PM (°C) 20	
Temperature Set 3: 10PM-6AM (°C) 18	
ACH @ 50 PA 12.01	
Number of 3 Pane Large Windows 0	
Number of 3 Pane Regular Windows 0	
Number of 2 Pane Large Windows2	
Number of 2 Pane Regular Windows 6	
Number of 1 Pane Large Windows 1	
Number of 1 Pane Regular Windows 9	
Number of Front Basement Windows 2	
Number of Back Basement Windows 1	
Number of Left Basement Windows 1	
Number of Right Basement Windows 1	
Number of Front Main Windows 6	
Number of Back Main Windows 4	
Number of Left Main Windows 2	
Number of Right Main Windows 1	
Number of Right Main Windows1Number of Windows in Basement5Number of Windows in Main13	

 Table C.24: Test Case House 23 – Specifications and Window Data

House Orientation	North
House Size (m ²)	116
Number of Storeys	1.5
Number and Construction of Doors	2 -wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.36
Foundation RSI (Km ² /W)	0.63
Ceiling RSI (Km ² /W)	2.38
$\frac{\text{Coming Rol}(\text{Rm}^2/\text{W})}{\text{Roof RSI}(\text{Km}^2/\text{W})}$	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ flame ret. Head
Space Heating Equipment Type Space Heating Equipment Efficiency (%)	78.7
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	<u>59.9</u>
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	8.77
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	7
Number of 1 Pane Large Windows	1
Number of 1 Pane Regular Windows	10
Number of Front Basement Windows	2
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	6
Number of Back Main Windows	5
Number of Left Main Windows	2
Number of Right Main Windows	1
Number of Windows in Basement	5
Number of Windows in Main	14

 Table C.25: Test Case House 24 – Specifications and Window Data

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

House Orientation	South
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	2.49
Foundation RSI (Km ² /W)	0.81
Ceiling RSI (Km ² /W)	4.57
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	vinyl siding
Space Heating Equipment Type	furnace with flame ret. Head
Space Heating Equipment Efficiency (%)	79
Space Heating Fuel Type	Oil
DHW Tank Size (L)	NA
DHW Equipment Type	Tankless Coil
DHW Fuel	Oil
DHW Efficiency (%)	46.1
Basement Heating	whole basement
Number of Occupants	. 3
Temperature Set 1: 6AM-6PM (°C)	19
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	5.28
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	10
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	1
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	1
Number of Front Main Windows	3
Number of Back Main Windows	3
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	3
Number of Windows in Main	8

 Table C.26: Test Case House 25 – Specifications and Window Data

House Orientation	South
House Size (m^2)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	2.03
Foundation RSI (Km ² /W)	0.597
Ceiling RSI (Km ² /W)	3.58
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	vinyl siding
Space Heating Equipment Type	furnace w/ flame ret. Head
Space Heating Equipment Efficiency (%)	78.7
Space Heating Fuel Type	Oil
DHW Tank Size (L)	NA
DHW Equipment Type	tankless coil
DHW Fuel	Oil
DHW Efficiency (%)	49.2
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	20
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	5.69
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	7
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	. 1
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	0
Number of Front Main Windows	3
Number of Back Main Windows	2
Number of Left Main Windows	1
Number of Right Main Windows	0
Number of Windows in Basement	2
Number of Windows in Main	6

Table C.27: Test Case House 26 – Specifications and Window Data

	Courth
House Orientation	South
House Size (m ²)	116
Number of Storeys	1.5
Number and Construction of Doors	2 - wood
Basement	full basement
Main Wall RSI (Km ² /W)	1.53
Foundation RSI (Km ² /W)	0.22
Ceiling RSI (Km ² /W)	1.91
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ flame ret. Head
Space Heating Equipment Efficiency (%)	77.7
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	Conventional
DHW Fuel	Oil
DHW Efficiency (%)	54.3
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	11.76
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	6
Number of 1 Pane Large Windows	2
Number of 1 Pane Regular Windows	9
Number of Front Basement Windows	2
Number of Back Basement Windows	1
Number of Left Basement Windows	1
Number of Right Basement Windows	1
Number of Front Main Windows	6
Number of Back Main Windows	5
Number of Left Main Windows	2
Number of Right Main Windows	1
Number of Windows in Basement	5

 Table C.28: Test Case House 27 – Specifications and Window Data

House Orientation	East
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood, 2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	1.9
Foundation RSI (Km ² /W)	3.83
Ceiling RSI (Km ² /W)	3.24
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ flame ret. Head
Space Heating Equipment Efficiency (%)	78.4
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	67.4
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	20
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	17
ACH @ 50 PA	6.51
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	7
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	1
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	0
Number of Front Main Windows	2
Number of Back Main Windows	2
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	6

 Table C.29: Test Case House 28 – Specifications and Window Data

House Orientation	East
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	1 - wood, 2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	1.59
Foundation RSI (Km ² /W)	3.85
Ceiling RSI (Km ² /W)	2.94
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	vinyl siding
Space Heating Equipment Type	furnace w/ flame ret. Head
Space Heating Equipment Efficiency (%)	78.6
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	68.8
Basement Heating	whole basement
Number of Occupants	3
Temperature Set 1: 6AM-6PM (°C)	21
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	8.43
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	1
Number of 2 Pane Regular Windows	6
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	1
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	0
Number of Front Main Windows	2
Number of Back Main Windows	2
Number of Left Main Windows	0
Number of Right Main Windows	1
Number of Windows in Basement	2
Number of Windows in Main	5

Table C.30: Test Case House 29 – Specifications and Window Data

House Orientation	East
House Size (m ²)	116
Number of Storeys	1
Number and Construction of Doors	2 - wood, 2 - metal
Basement	full basement
Main Wall RSI (Km ² /W)	2.47
Foundation RSI (Km ² /W)	4.66
Ceiling RSI (Km ² /W)	4.36
Roof RSI (Km ² /W)	0.26
Attic	yes
External Wall Material	wood
Space Heating Equipment Type	furnace w/ flame ret. Head
Space Heating Equipment Efficiency (%)	80.3
Space Heating Fuel Type	Oil
DHW Tank Size (L)	180
DHW Equipment Type	conventional
DHW Fuel	electricity
DHW Efficiency (%)	67.9
Basement Heating	whole basement
Number of Occupants	4
Temperature Set 1: 6AM-6PM (°C)	21
Temperature Set 2: 6PM-10PM (°C)	21
Temperature Set 3: 10PM-6AM (°C)	18
ACH @ 50 PA	5.42
Number of 3 Pane Large Windows	0
Number of 3 Pane Regular Windows	0
Number of 2 Pane Large Windows	2
Number of 2 Pane Regular Windows	9
Number of 1 Pane Large Windows	0
Number of 1 Pane Regular Windows	0
Number of Front Basement Windows	1
Number of Back Basement Windows	1
Number of Left Basement Windows	0
Number of Right Basement Windows	1
Number of Front Main Windows	3
Number of Back Main Windows	3
Number of Left Main Windows	1
Number of Right Main Windows	1
Number of Windows in Basement	3
Number of Windows in Main	8

 Table C.31: Test Case House 30 – Specifications and Window Data

Appendix D

ESP-r Multi-Layer Construction Database

Test Case House Multi-Layer Construction Database:

MLC Description: External Wall MLC Name: Ex_Wall MLC Details:

Layer #	Reference #	Thickness	Material Name
		(m)	
1	4	0.1	Outer Leaf Brick
2	0	0.025	Air (0.17 0.17 0.17)
3	67	0.011	Chipboard
4	281	0.14	Glass Fibre Quilt
5	72	0.012	Plywood

MLC Description: Single Pane Window MLC Name: 1_Pane MLC Details:

Layer #	Reference #	Thickness	Material Name
		(m)	
1	242	0.003	Plate Glass

MLC Description: Double Pane Window MLC Name: 2_Pane MLC Details:

Layer #	Reference #	Thickness	Material Name
		(m)	
1	242	0.003	Plate Glass
2	0	0.013	Air (0.17 0.17 0.17)
3	242	0.003	Plate Glass

MLC Description: Triple Pane Window MLC Name: 3_Pane MLC Details:

Layer #	Reference #	Thickness
- 		(m)
1	242	0.003
2	0	0.013
3	242	0.003
4	0	0.013
5	242	0.003
	~	

Material Name

Plate Glass Air (0.17 0.17 0.17) Plate Glass Air (0.17 0.17 0.17) Plate Glass

MLC Description: Ceiling MLC Name: Ceiling MLC Details:

Layer #	Reference #	Thickness	Material Name
		(m)	
1	107	0.0127	Gypsum Plasterboard
2	219	0.25	Thermalite Turbo Block
3	72	0.025	Plywood

MLC Description: Inverted Ceiling MLC Name: Ceiling_inv MLC Details:

Layer #	Reference #	Thickness (m)	Material Name
1	72	0.025	Plywood
2	219	0.25	Thermalite Turbo Block
3	107	0.0127	Gypsum Plasterboard

MLC Description: Floor MLC Name: Floor MLC Details:

Layer #	Reference #	Thickness (m)	Material Name
1	225	0.015	Synthetic Carpet
2	65	0.025	Flooring
3	0	0.01	Air (0.17 0.17 0.17)
4	70	0.017	Plywood

MLC Description: Inverted Floor MLC Name: Floor_inv MLC Details: 229

Layer #	Reference #	Thickness (m)	Material Name
1	70	0.017	Plywood
2	0	0.01	Air (0.17 0.17 0.17)
3	65	0.025	Flooring
4	225	0.015	Synthetic Carpet

MLC Description: Steel Door MLC Name: External Steel Door MLC Details:

Layer #	Reference #	Thickness	Material Name
		(m)	
1	283	0.005	Light Steel Door
2	205	0.025	Polyurethane Foam Board
3	283	0.005	Light Steel Door

MLC Description: Wood MLC Name: Wood Door MLC Details:

Layer #	Reference #	Thickness	Material Name
		(m)	
1	69	0.025	Oak (radial)

MLC Description: Slab Floor MLC Name: Slab MLC Details:

Layer #	Reference #	Thickness	Material Name
		(m)	
1	263	0.1	Common Earth
2	82	0.1	Red Granite
3	32	0.05	Heavy Mix Concrete
4	124	0.05	Cement Screed

MLC Description: Roof MLC Name: Roof

MLC Details:

Layer #	Reference #	Thickness
		(m)
1	163	0.05
2	72	0.012

Material Name

Asphalt Mastic Roof Plywood

MLC Description: Foundation MLC Name: Foundation MLC Details:

Layer #	Reference #	Thickness (m)	Material Name
1	21	0.2	Light Mix Concrete
2	107	0.0135	Gypsum Plasterboard

Appendix E

DHW Heat Injector Rate Calculations

Table E.1 details the heat injector input based on fuel type and tank size as well as the number of bathrooms and bedrooms (ASHRAE, 1999).

Number of Baths		1 to 1.5	;		2 to	2.5			3 ti	o 3.5	
Number of Bedrooms	1	2	3	2	3	4	5	3	4	5	6
GAS ³					•						
Storage, L	76	114	114	114	150	150	190	150	190	190	190
kW input	7.9	10.5	10.5	10.5	10.5	11.1	13.8	11.1	11.1	13.8	14.6
1-h draw, L	163	227	227	227	265	273	341	273	311	341	350
Recovery, mL/s	- 24	32	32	32	32	36	42	34	. 34	42	44
ELECTRIC											
Storage, L	76	114	150	150	190	190	250	190	250	250	300
kW input	2.5	3.5	4.5	4.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
1-h draw. L	114	167	220	220	273	273	334	273	334	334	387
Recovery, mL/s	10	15	19	19	23	23	23	23	23	23	23
OIL ^a											
Storage, L	114	114	114	114	114	114	114	114	114	114	114
kW input	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5
1-h draw, L	337	337	337	337	337	337	337	337	337	337	337
Recovery, mL/s	62	62	62	62	62	62	62	62	62	62	62
TANK-TYPE INDIRECT ^{b.c}											
I-W-H-rated draw. L in 3 h, 55 K rise		150	150		250	250*	250	250	250	250	250
Manufacturer-rated draw, L in 3 h, 55 K rise		186	186		284	284e	284	284	284	284	284
Tank capacity, L		250	250		250	250ª	310	250	310	310	310
TANKLESS-TYPE INDIRECT ^{c,d}											
I-W-H-rated draw, mL/s, 55 K rise		170	170		200	200 ^e	240	200	240	240	240
Manufacturer-rated draw, L in 5 min, 55 K rise		57	57		95	95°	133	95	133	133	133

Table E.1: DHW Data

The data from Table E.1 was used to determine the DHW heat injector rate based on fuel type and tank size, as these two variables were available in the SHEU database.

Table E.2 summarizes the data available for natural gas fired DHW tanks.

Tank Size (L)	kW Input (kW)	Average kW Input
76	7.9	7.9
114	10.5	10.5
150	10.5	10.8
150	11.1	10.0
190	13.8	
190	11.1	13.17
190	14.6	

Table E.2: DHW Data - Natural Gas

Figure E.1 was generated using the data in Table E.2, and the resulting trend line equation used to determine the heat injector rate for the tank sizes used in the test case houses, namely 140L, 180L, and 230L.

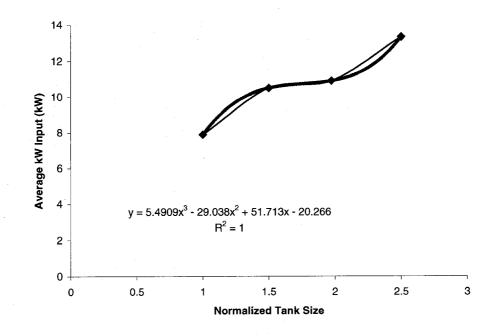


Figure E.1: Normalized Tank Size vs. Average kW Input – Natural Gas

Table E.3 details the heat injector rates used for different tank sizes. The bolded values are the values used for the test case house tank sizes.

Tank Size	Normalized	Average
(L)	Tank Size	kW Input
76	1.00	7.90
140	1.84	10.78
180	2.37	12.28
190	2.50	13.32
230	3.03	22.48
270	3.55	43.16

Table E.3: Heat Injector Rate – Natural Gas

The same approach was used to determine the heat injector rate for oil and electric DHW tanks. Table E.4 summarizes the data available for oil fired DHW tanks.

 Table E.4: DHW Data - Oil

Tank Size	kW Input	Average
(L)	(kW)	kW Input
114	20.5	20.5

According to Table E.1, all oil fired DHW tanks have the same heat injector rate; therefore for all oil fired DHW tanks use 20.5 kW input.

Table E.5 summarizes the data for electric DHW tanks.

Tank Size (L)	kW Input	Average kW Input
76	2.5	2.5
114	3.5	3.5
150	4.5	4.5
190	5.5	5.5
250	5.5	5.5
300	5.5	5.5

Table E.5: DHW Data - Electricity

Figure E.2 was generated using the data in Table E.5, and the equation used to determine the heat injector rate for the tank sizes used in the test case houses, namely 140L, 180L, and 230L.

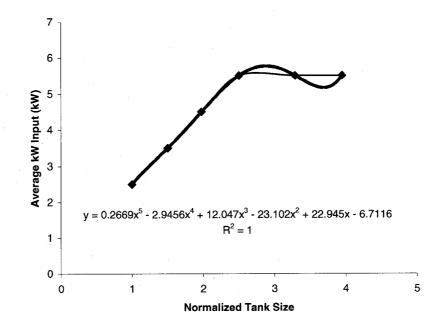


Figure E.2: Normalized Tank Size vs. Average kW Input - Electricity

Table E.6 details the heat injector rates used for different tank sizes. The bolded values are the values used for the test case house tank sizes.

Tank Size	Normalized	Average
(L)	Tank Size	kW Input
76	1.00	2.50
140	1.84	4.21
180	2.37	5.30
190	2.50	5.50
230	3.03	5.73
250	3.29	5.50

Table E.6: Heat Injector Rate - Electricity

Appendix F

Flat Rate and Time-of-Use Electricity Pricing

In most provinces in Canada, electricity consumption at the residential level is charged using a flat rate based on the number of kilowatt-hours (kWh) consumed. Nova Scotia and recently, Ontario have moved to a time-of-use (TOU) pricing scenario, assigning different prices depending on the time of day the electricity is used (Nova Scotia Power, 2006, Ontario Energy Board, 2006). In this work, understanding how the pricing scheme (i.e.: flat rate versus TOU pricing) affects the economic viability of ICE based cogeneration is under investigation. For provinces in which there is not currently a TOU pricing scenario, namely British Columbia, Alberta, Saskatchewan, Manitoba, Quebec, New Brunswick, Prince Edward Island, and Newfoundland, TOU pricing schemes were generated. The methodology used is discussed in detail below.

F.1 Time-of-Use Pricing Scheme in Ontario

The TOU scenario implemented in Ontario as of May 1, 2006 is detailed in Figure F.1, illustrating the wholesale electricity prices.

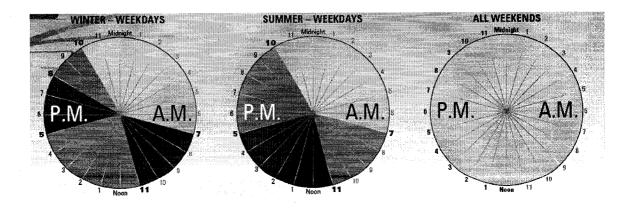


Figure F.1 Time-of-use Pricing in Ontario (Ontario Energy Board, 2006)

Where:

- On-peak price = 10.5 ¢/kWh
- Mid-peak price = 7.5 ¢/kWh
- Off-peak price = 3.5 ¢/kWh

F.2 Provincial Flat Rate Electricity Prices

The determination of a retail flat rate price for Ontario is detailed in Table F.1.

Duration	Whole- sale Rate (¢/kWh)	Trans. (¢/kWh)	Distribution Charge	Wholesale Market Operation (¢/kWh)	Retirement	Charge	Price (¢/kWh)
1-24	5.8	1.02	1.86	0.62	0.7	0.000347	10.0

Table F.1: Ontario Flat Rate Price

Thus, the flat rate price for Ontario is 10 ¢/kWh (Ontario Energy Board, 2006).

Manitoba, Quebec, New Brunswick and Prince Edward Island have tiered flat rate pricing schemes, thus determining a single flat rate price required some analysis. Each of these provinces is discussed below.

F.2.1 Manitoba Flat Rate Price Determination

The pricing scheme defined by Manitoba Hydro is (Manitoba Hydro, 2006):

First 175 kWh/month @ 5.78 ¢/kWh Remaining @ 5.654 ¢/kWh

In order to determine a single flat rate price, it is necessary to determine the number of kWh/month consumed by each of the three test case houses in Manitoba. Using the Neural Network estimates for annual electricity consumption, discussed in Section 6.2,

the average monthly consumption was calculated, and the results are tabulated in Table F.2.

Trat	Annual	Monthly
Test	Electricity	Electricity
Case	Consumption	Consumption
House	(kWh)	(kWh)
A10	9697	808
A11	8276	690
A12	7344	612

Table F.2: Manitoba - Annual and Monthly Electricity Consumption

The flat rate was determined using a weighed average according to Equation F.1.

$$P_F = \frac{\left[(h_I \times P_I) + (h_{II} \times P_{II}) \right]}{h_{TOTAL}}$$
[F.1]

Where:

 P_F = flat rate electricity price (¢/kWh)

 h_I = number of kWh in first price tier

 P_I = flat rate electricity price for first tier (¢/kWh)

 h_{II} = number of kWh in second price tier

 P_{II} = flat rate electricity price for second tier (¢/kWh)

 h_{TOTAL} = total number of kWh

Using the weighted average, Table F.3 details the flat rate prices for each of the test case houses in Manitoba.

Test Case House	Number of kWh in Tier I	Number of kWh in Tier II	Flat Rate Price (¢/kWh)
10	175	633	5.681
11	175	515	5.686
12	175	437	5.69

Table F.3: Flat Rate Prices for Manitoba Test Case Houses

To simplify the analysis, the average flat rate price of 5.69 ϕ/kWh was used for all three test case houses in Manitoba.

F.2.2 Quebec Flat Rate Determination

The pricing scheme as defined by Hydro Quebec is defined as (Hydro Quebec, 2006):

First 30 kWh/day @ 5.22 ¢/kWh

Remaining @ 6.83 ¢/kWh

In order to determine a single flat rate price, it is necessary to determine the number of kWh/day consumed by each of the three test case houses in Quebec. Using the Neural Network estimates for annual electricity consumption as discussed in Section 6.2, the average daily consumption was calculated, and the results are tabulated in Table F.4.

Test Case House	Annual Electricity Consumption (kWh)	Daily Electricity Consumption (kWh)
A16	8537	23
A17	7625	21
A18	6078	17

 Table F.4: Quebec – Annual and Daily Electricity Consumption

According to Table F.4, no test case house consumes more than 30kWh per day, therefore the flat rate price of 5.22 ϕ/kWh was used for all three test case houses in Quebec.

F.2.3 New Brunswick Flat Rate Determination

The pricing scheme as defined by New Brunswick Power is defined as (NB Power, 2006):

First 1300 kWh/month @ 9.04 ¢/kWh Remaining @ 7.16 ¢/kWh

In order to determine a single flat rate price, it is necessary to determine the number of kWh/month consumed by each of the three test case houses in New Brunswick. Using the Neural Network estimates for annual electricity consumption as discussed in Section 6.2, the average monthly consumption was calculated, and the results are tabulated in Table F.5.

Test Case House	Annual Electricity Consumption (kWh)	Monthly Electricity Consumption (kWh)
A19	7439	620
A20	9013	751
A21	7450	621

Table F.5: New Brunswick – Annual and Monthly Electricity Consumption

According to Table F.5, no test case house consumes more than 1300kWh per month, therefore the flat rate price of 9.04 ϕ/kWh was used for all three test case houses in New Brunswick.

F.2.4 Prince Edward Island Flat Rate Determination

The pricing scheme as defined by The Maritime Electric Company, the main utility in P.E.I., is defined as (Maritime Electric, 2006):

First 1200 kWh/month @ 10.68 ¢/kWh Remaining @ 8.28 ¢/kWh

In order to determine a single flat rate price, it is necessary to determine the number of kWh/month consumed by each of the three test case houses in Prince Edward Island. Using the Neural Network estimates for annual electricity consumption as discussed in Section 6.2, the average monthly consumption was calculated, and the results are tabulated in Table F.6.

Test	Annual Electricity	Monthly Electricity
Case House	Consumption (kWh)	Consumption (kWh)
A25	7143	595
A26	7527	627
A27	6774	565

Table F.6: Prince Edward Island – Annual and Monthly Electricity Consumption

According to Table F.6, no test case house consumes more than 1200kWh per month, therefore the therefore the flat rate price of 10.68 ¢/kWh was used for all three test case houses in Prince Edward Island.

The remaining provinces namely, British Columbia, Alberta, Saskatchewan and Newfoundland have only one flat rate price, which was used to determine the TOU pricing. Table F.7 details the flat rate prices for all ten provinces that were used to determine the TOU structure. While a TOU structure is in place in Ontario, a flat rate price of 10 ϕ /kWh is also available, and this is the flat rate price used to generate the provincial TOU scenarios as discussed in Section F.3. In addition, Nova Scotia offers both a flat rate price and a TOU pricing scheme, both are detailed below.

Province	Flat Rate Electricity Price (¢/kWh)
British Columbia	6.33
Alberta	7.71
Saskatchewan	8.99
Manitoba	5.69
Ontario	10.00
Quebec	5.22
New Brunswick	9.04
Nova Scotia	10.13
Prince Edward Island	10.68
Newfoundland	8.92

 Table F.7: Flat Rate Electricity Prices by Province⁷

F.3 TOU Schemes by Province

Using the TOU pricing scheme for Ontario, the flat rate price for Ontario, and the flat rate price for each province, a TOU scheme was developed for each province. Tables F.8 – F.10 detail the TOU scheme for Ontario according to Figure F.1.

⁷ All prices are retail prices

Duration (hour)		Rate (¢/kWh)	Trans. (¢/kWh)	Distribution Charge (¢/kWh)	Wholesale Market Operation (¢/kWh)	Debt Retirement Charge (¢/kWh)	Regulated Price Plan Admin. Charge (¢/kWh)	Final Price (¢/kWh)
1-6	Off-Peak	3.5	1.02	1.86	0.62	0.7	0.000347	7.7
7-10	On-Peak	10.5	1.02	1.86	0.62	0.7	0.000347	14.7
11-16	Mid-Peak	7.5	1.02	1.86	0.62	0.7	0.000347	11.7
17-19	On-Peak	10.5	1.02	1.86	0.62	0.7	0.000347	14.7
20-21	Mid-Peak	7.5	1.02	1.86	0.62	0.7	0.000347	11.7
22-24	Off-Peak	3.5	1.02	1.86	0.62	0.7	0.000347	7.7

Table F.8: Ontario TOU Pricing – Winter Weekdays

Table F.9: Ontario TOU Pricing – Summer Weekdays

Duration (hour)		Rate (¢/kWh)	Trans. (¢/kWh)	Distribution Charge (¢/kWh)	Wholesale Market Operation (¢/kWh)	Debt Retirement Charge (¢/kWh)	Regulated Price Plan Admin. Charge (¢/kWh)	Final Price (¢/kWh)
1-6	Off-Peak	3.5	1.02	1.86	0.62	0.7	0.000347	7.7
7-10	Mid-Peak	7.5	1.02	1.86	0.62	0.7	0.000347	11.7
11-16	On-Peak	10.5	1.02	1.86	0.62	0.7	0.000347	14.7
17-21	Mid-Peak	7.5	1.02	1.86	0.62	0.7	0.000347	11.7
22-24	Off-Peak	3.5	1.02	1.86	0.62	0.7	0.000347	7.7

Table F.10: Ontario TOU Pricing – All Weekends

Duration (hour)		Rate (¢/kWh)	Trans. (¢/kWh)	Distribution Charge (¢/kWh)	Wholesale Market Operation (¢/kWh)	Debt Retirement Charge (¢/kWh)	Regulated Price Plan Admin. Charge (¢/kWh)	Final Price (¢/kWh)
1-24	Off-Peak	3.5	1.02	1.86	0.62	0.7	0.000347	7.7

Using the flat rate price and TOU prices for Ontario as well as the flat rate prices for each province, a TOU scheme was developed. At each hour, the price in ϕ/kWh was determined using Equation F.2.

$$P_{TOU} = O_{TOU} \times \left(\frac{P_F}{O_F}\right)$$
[F.2]

Where:

 P_{TOU} = provincial time-of-use electricity price (¢/kWh)

 O_{TOU} = Ontario time-of-use electricity price (¢/kWh)

 P_F = provincial flat rate electricity price (¢/kWh)

 O_F = Ontario flat rate electricity price (¢/kWh)

F.3.1 Provincial TOU Pricing Results

The results for each province are presented in Tables F.11 - F.37.

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	4.9
7-10	On-Peak	9.3
11-16	Mid-Peak	7.4
17-19	On-Peak	9.3
20-21	Mid-Peak	7.4
22-24	Off-Peak	4.9

Table F.11: British Columbia TOU Pricing - Winter Weekdays

 Table F.12: British Columbia TOU Pricing – Summer Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	4.9
7-10	Mid-Peak	7.4
11-16	On-Peak	9.3
17-21	Mid-Peak	7.4
22-24	Off-Peak	4.9

Table F.13: British	Columbia TO	U Pricing –	All Weekends
---------------------	-------------	-------------	--------------

Duration (hour)	Time Period	Rate (¢/kWh)	
1-24	Off-Peak	4.9	

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	5.9
7-10	On-Peak	11.3
11-16	Mid-Peak	9.0
17-19	On-Peak	11.3
20-21	Mid-Peak	9.0
22-24	Off-Peak	5.9

Table F.14: Alberta TOU Pricing – Winter Weekdays

Table F.15: Alberta TOU Pricing – Summer Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	5.9
7-10	Mid-Peak	9.0
11-16	On-Peak	11.3
17-21	Mid-Peak	9.0
22-24	Off-Peak	5.9

Table F.16: Alberta TOU Pricing – All Weekends

Duration (hour)	Time Period	Rate (¢/kWh)	
1-24	Off-Peak	5.9	

Table F.17: Saskatchewan TOU Pricing – Winter Weekday	T	'able	• F .)	17:	Sas	katcl	hewan	TO	JU.	Pricing –	Winter	Weekday
---	---	-------	---------------	-----	-----	-------	-------	----	-----	-----------	--------	---------

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	6.9
7-10	On-Peak	13.2
11-16	Mid-Peak	10.5
17-19	On-Peak	13.2
20-21	Mid-Peak	10.5
22-24	Off-Peak	6.9

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	5.9
7-10	Mid-Peak	9.0
11-16	On-Peak	11.3
17-21	Mid-Peak	9.0
22-24	Off-Peak	5.9

Table F.18: Saskatchewan TOU Pricing – Summer Weekdays

Table F.19: Saskatchewan TOU Pricing – All Weekends

Duration (hour)	Time Period	Rate (¢/kWh)	
1-24	Off-Peak	5.9	

Table F.20: Manitoba TOU Pricing – Winter Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	4.4
7-10	On-Peak	8.4
11-16	Mid-Peak	6.6
17-19	On-Peak	8.4
20-21	Mid-Peak	6.6
22-24	Off-Peak	4.4

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	4.4
7-10	Mid-Peak	6.6
11-16	On-Peak	8.4
17-21	Mid-Peak	6.6
22-24	Off-Peak	4.4

Table F.22: Manitoba TO	OU Pricing – All Weekends
-------------------------	---------------------------

Duration (hour)	Time Period	Rate (¢/kWh)
1-24	Off-Peak	4.4

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	4.0
7-10	On-Peak	7.7
11-16	Mid-Peak	6.1
17-19	On-Peak	7.7
20-21	Mid-Peak	6.1
22-24	Off-Peak	4.0

Table F.23: Quebec TOU Pricing – Winter Weekdays

Table F.24: Quebec TOU Pricing – Summer Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	4.0
7-10	Mid-Peak	6.1
11-16	On-Peak	7.7
17-21	Mid-Peak	6.1
22-24	Off-Peak	4.0

Table F.25: Quebec TOU Pricing – All Weekends

Duration (hour)	Time Period	Rate (¢/kWh)
1-24	Off-Peak	4.0

Table F.26: New I	Brunswick TC)U Pricing –	Winter	Weekdays
-------------------	--------------	--------------	--------	----------

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	7.0
7-10	On-Peak	13.3
11-16	Mid-Peak	10.6
17-19	On-Peak	13.3
20-21	Mid-Peak	10.6
22-24	Off-Peak	7.0

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	7.0
7-10	Mid-Peak	10.6
11-16	On-Peak	13.3
17-21	Mid-Peak	10.6
22-24	Off-Peak	7.0

Table F.27: New Brunswick TOU Pricing – Summer Weekdays

Table F.28: New Brunswick TOU Pricing – All Weekends

Duration (hour)	Time Period	Rate (¢/kWh)
1-24	Off-Peak	7.0

Table F.29: Prince Edward Island TOU Pricing – Winter Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	8.2
7-10	On-Peak	15.7
11-16	Mid-Peak	12.5
17-19	On-Peak	15.7
20-21	Mid-Peak	12.5
22-24	Off-Peak	8.2

 Table F.30: Prince Edward Island TOU Pricing – Summer Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	8.2
7-10	Mid-Peak	12.5
11-16	On-Peak	15.7
17-21	Mid-Peak	12.5
22-24	Off-Peak	8.2

Table F.31: Prince	Edward Island	TOU Pricing ·	- All Weekends
--------------------	---------------	---------------	----------------

Duration (hour)	Time Period	Rate (¢/kWh)
1-24	Off-Peak	8.2

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	6.9
7-10	On-Peak	13.1
11-16	Mid-Peak	10.4
17-19	On-Peak	13.1
20-21	Mid-Peak	10.4
22-24	Off-Peak	6.9

Table F.32: Newfoundland TOU Pricing – Winter Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	6.9
7-10	Mid-Peak	10.4
11-16	On-Peak	13.1
17-21	Mid-Peak	10.4
22-24	Off-Peak	6.9

Duration	Time Period	Rate
(hour)	Time Tenod	(¢/kWh)
1-24	Off-Peak	6.9

Nova Scotia currently has a TOU pricing scheme and is presented in Tables F.35 – F.37 (Nova Scotia Power, 2006).

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	5.1
7-11	On-Peak	14.6
11-17	Mid-Peak	10.1
18-22	On-Peak	14.6
23-24	Off-Peak	5.1

		– Feb.) Weekdays

Duration (hour)	Time Period	Rate (¢/kWh)
1-6	Off-Peak	5.1
7-10	Mid-Peak	10.1
11-24	Off-Peak	5.1

Table F.36: Nova Scotia TOU Pricing – Non-Winter (Mar. – Nov) Weekdays

Table F.37: Nova Scotia TOU Pricing – All Weekends

Duration (hour)	Time Period	Rate (¢/kWh)
1-24	Off-Peak	5.1

Appendix G

Electricity Greenhouse Gas Emissions Data

Tables G.1 - G.30 detail the GHG emissions, electricity generation, and the GHG intensity for each province (Environment Canada,

2006)															
		-	Table (j.1: Bri	tish Co	lumbia	- GHG	Emissi	ons (kt	e G.1: British Columbia - GHG Emissions (kt CO2eq)					
Sources	1990	1991	1992	1993	1994	1995	1996	1997	1998	1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	2000	2001	2002	2003	2004
Coal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Refined Petroleum															
Products	333	532		243	118	91	135	LL	76	70	88	108	60	82	. 85
Natural Gas	841	507	1030	2100	2060 2610	2610	632	1110	1770	1200	1360	1360 2920	1120	1250	1380
Nuclear	ı	. 1	I	ı	I	I	I	· 1	1	ı	ı	ı	I	I	I
Hydro	I	I	I	ı	ı	ı	ı	ı	н	I	ı	I	ı	11	I
Biomass	ı	ı	ı	ı	ı	· 1	1	I	I	1	ı	ı	, I	1	I
Others	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1170	1040	1270	2340	2340 2180 2700	2700		1190	1840	<i>770</i> 1190 1840 1270 2450 3030 1180 1330	2450	3030	1180	1330	1460

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

Sources				•											
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Refined															
Petroleum															
Products	510	688	391	433	213	169	3732	373 2232508	141	154	157	204	140	165	180
Natural Gas	1647	1040	1999	4012	4523	5728	1675	0	3795	3190	5106	6454	3126	3440	4065
Nuclear	0	0	0	0	0	0	0	63332	0	0	0	0	0	0	0
Hydro	57308 60197		60663	53174	54305	50181 (67668	2383	60860	61582	60208	49162	58878	56929	54653
Biomass	1549 1458	1458	1778	2030	2630	2540	2583	438	2402	2893	2921	2660	2775	2766	2948
Others	0	0	0	103	401	436	374	68884	573	362	293	283	416	82	105
Total	61015 €	63383	64831	59753	62071	59054	72673		67771	68182	68684	58763	65335	63382	61951
		L	lable G	.3: Brit	ish Col	umbia -	- GHG	Table G.3: British Columbia – GHG Intensity (gCO ₂ eq/kWh)	ty (gCO)2eq/kV	(h)				
Sources	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	1						•	1	•		•	1	I	1	1
Refined Petroleum	_														
Products	653	773	605	562	555	536	363	346	538	450	560	530	430	500	470
Natural Gas	510	488	516	523	465	456	378	442	466	463	463	453	359	363	339
Nuclear	ı	I		1	•	1	1	I	I	1	I	I	I	I	I
Hydro	,	I	1	1	ı	ŀ	1	I	I	ı	ı	I	I	I	I
Biomass	I	I		1	I	1	•	I	1	I	ŀ	I	I	I	I
Others	I	I		I	•		1	I	Ι.	I	1	ı	1	I	1
Arronoco Intensity															

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

			Ta	ble G.4	: Alber	ta - GH	lG Emi	Table G.4: Alberta - GHG Emissions (kt CO ₂ eq)	kt CO ₂	eq)					
Sources	1990	1990 1991 1992	1992	1993	1994	1994 1995	1996 1997	1997	1998 1999	1999	2000	2001	2002	2002 2003	2004
Coal	37300	37300 39400 41700	41700	42600	46000	46300	44900	46700	46200	44300	44000	42600 46000 46300 44900 46700 46200 44300 44000 45200 46000 45600	46000		45200
Refined Petroleum															
Products	12	14	15	18	18	16	43	8	31	30	40	30	30	40	40
Natural Gas	2290	2040	2850	2810	2790	2220	2900	3350	4360	4480	6550	6210	5060	5260	4640
Nuclear	i	I	I	ı	I	1	I	I	1	ı		I	4	1	
Hydro		ı	ı	ı	ı	I	ı	ı	ı	ı	I ,	i	I ,	ı	ı
Biomass	1.	I	I	1	I	I	ì	I	Ϊ.	I	т	I	I	I	ı
Others	334	345	425	392	543	443	260	170-	840	970	1040	1190	1190	3200	2220
Total	40000	40000 41800 45000	45000	45800	49300	49000	48100	50800	51400	49800	51700	52600	52300	54100	52100
			Tab	le G.5:	Albert	a – Elec	tricity	Table G.S: Alberta – Electricity Generation (GWh)	tion (G	(hW					
Sources	1990	1990 1991	1992	1993	1994	1995	1996	1996 1997	1998	1999	2000	2001	2002	2003	2004
Coal	34672	34672 36391 38373	38373	39066	42467	43069	41596	43134	42332	41814	42199	39066 42467 43069 41596 43134 42332 41814 42199 45943 47189	47189	43368	44586
Refined Petroleum															
Products	14	16	18	21	21	20	52	10	39	33	41	39	37	2508	1507
Natural Gas	4971	4484	5960	5911	6000	5111	6273	6817	8816	8516	12141	11969	9666	9971	8944
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydro	2060	2030	1563	1808	1806	2190	1990	1837	2098	2239	1845	1568	1884	2162	2497
Biomass	446	557	565	717	771	756	725	828	821	829	778	1216	1220	1236	1246
Others	666	1001	1139	1141	1295	1308	1316	535	315	1716	1530	1303	1313	1069	1663
Total	43162	43162 44480 47617	47617	48663	52361	52453	51951	53161	54421	55147	58534	62038	61641	60314	60443

253

gCO ₂ eq/kWh)	fur why or g	1
GHG Intensity (fuenting offo	
Table G.6: Alberta –	T TUDITY IN O IN TUDITY	

Sources	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	1080	1080 1080 1090	1090	1090	1080	1070	1080	1080	1090	1060	1040	980	980	1050	1010
Refined Petroleum															
Products	857	857 841 851	851	847	845	835	832	792	793	830	850	790	690	20	30
Natural Gas	461	455	478	475	465	435	463	492	495	526	539	519	506	528	519
Nuclear	1	I	ı	i	I	ı	ı	ı	ı	ı	ı	ı	ı	ı	F
Hydro	I		1	I	ı	ı	I	I	i	ı.	1	1	ı	ı	ı
Biomass	I	I	I	I	I	I	I	I	1	ł	I	I	· 1	.1	I
Others	334	334 345	373	343	419	339	198	1450	2680	564	677	915	904	2991	1332
Average Intensity	926	926 940		941	942	934	927	956	944	902	882	848	849	868	861

Table G.7: Saskatchewan - GHG Emissions (kt CO₂eq)

			I able	2.1.0	askatch	lewan -	CHG	OISSIM	ns (kt C	U2eq)					
Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	10100	10100 10300 11600	11600	12100	13100	13400	13500	14000	14100	14000	13200	X	X	X	X
Refined Petroleum															
Products		21	21	19	28	57	63	82	50	50	40	X	X	Х	X
Natural Gas		260 306 571	571	268	129	412	419	759	989	880	1440	X	X	X	X
Nuclear		I	1		I	•	I	ŀ	I	I	I	X	X	X	X
Hydro	I	I	I	I	I	I	ł	ł	I	I	1	X	X	X	X
Biomass	I	I	I	I	I	ı	1	I		ı	I	X	X	×	X
Others	I	ı	I	I	T	ı	•	1	1	-	1	Х	Х	Х	X
Total	10400	10600	10400 10600 12100	12400	13300	13900	14000	14900	3300 13900 14000 14900 15100 14900 14700	14900	14700	X	Х	Х	X

Table G.8: Saskatchewan – Electricity Generation (GWh)

Sources	1990	1990 1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	8634	8617	9889 1	10433	11544	11258	11175	11258 11175 11290 1	11622		11819	11819 11756	11848 1	11576	12157
Refined Petroleum															
Products	47	43	46	41	64	95	95			59	50	40	37	34	30
Natural Gas	545	622	1048	579	374	816	813	1337		1483	1725 1483 2448 2678	2678	2839	4440	4152
Nuclear	0	0	0	0	0	0	0			0	0	0		0	0
Hydro	4215	4214	3059	4051	3393		4376	3987	3442	•••	3046	2393	2879	3475	2820
Biomass	100	102	94	98	103	107	96	126	114	115		349		265	277
Others	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	13541	3541 13598 14137	14137	15212	15479	16394	16554	16837	16961	16988	17488	17215	17970	19790 1	19437

Table G.9: Saskatchewan - GHG Intensity (gCO2eq/kWh)

			Table G.	ISBU :V:	vauciliev	D – IIRA		Culoury (SCU2et						
Sources	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	1170	1170 1190 1170	1170	1160	1140	1190	1210	1240	1210	1200	1120	X	X	X	X
Refined Petroleum															
Products	478	478 480 459	459	473	433	594	666	841	853	850	810	X	X	X	X
Natural Gas	476	492	545	464	345	506	516	568	573	594	590	X	X	X	X
Nuclear	'	ı	i	,	ı	ı	I	I	ı	ı	ı	X	X	X	X
Hydro	ı	ı	I	ı	ı	I	I	I	I	ı	I	X	X	X	X
Biomass	ı	I	I	I	I	ı	ı	I	ı	١	I	Х	X	X	X
Others	ı	I	I	1	1	ł	I	I	1	1	ı	Х	X	Х	X
Average Intensity	765	780	859	815	857	846	847	882	891	878	840	Х	Х	Х	X

255

2eq
2
kt
IS (
ion
iiss
Em
J
GHG E
<u> </u>
ba
nite
Ja l
G.10
e G
pl
Ë

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	455	352	351	252	276	180	282	224	944	522	971	X	X	X	X
Refined Petroleum															
Products	99	64 61	61	30	45	35	56	20	18	24	22	X	X	X	X
Natural Gas	З	6	S	0	0	4	7	0	0	0	0	X	X	X	X
Nuclear	. 1	ı	ı	I	I	ļ	1	ı	ı	ı		Х	X	X	X
Hydro	I	I	I	I	I	I	I	ı	•	ı	I.	X	X	X	X
Biomass	I	I	I	1	1	ı	ı	I	I	I	I	X	X	X	X
Others	0	0	0	0	0	0	0	0	0	0	0	X	Х	X	X
Total	525	418	417	284	323	219	340	244	962	546	993	Х	X	Х	X

			Table	G.11:	Manito	ba – El	ectricit	y Gene	le G.11: Manitoba – Electricity Generation (GWh)	GWh)					
Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1993 1994 1995 1996 1997 1998 1999	1999	2000	2000 2001	2002	2002 2003	2004
Coal	322	233	237	188	195	128	200	178	844	461	869	443	365	611	296
Refined Petroleum															
Products	61	65	51	31	54	57	61	27	25	36	36	45	46	33	32
Natural Gas	13	6	14	6	8	14	11	1	0	0	0	0	134	184	63
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydro	19827	19827 22554 26434	26434	26891	28146	29013	30866	33391	30781	28138	31536	32899	28821	26891 28146 29013 30866 33391 30781 28138 31536 32899 28821 20246 27219	27219
Biomass	31	30	43	40	42	26	45	64	74	56	60	61	72	67	75
Others	0	0	0	0	0	0	0	0	0	0	0	0	0	12	18
Total	20254 2289	22891		27159	28445	29238	31184	33661	31724	28691	32501	33448	29438	27159 28445 29238 31184 33661 31724 28691 32501 33448 29438 21152 27703	27703

			Table		Janitob	a – GH	G.12: Manitoba – GHG Intensity	nsity (g	CO2eq/kWh	kWh)	·				
Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	1410	1410 1510 1480	1480	1340	1420	1410	1410	1260	1120	1130	1120	X	X	X	X
Refined Petroleum															
Products		999 1080	1080	970	828	616	911	741	733	650	600	X	X	X	X
Natural Gas	236	248	371	257	238	258	225	272	1	•	1	X	X	X	X
Nuclear		ı	ı	ı	ı	I	I	I	1	I	I	X	X	X	X
Hydro	I	ł	ı	ı	ı		ı	I	l	ı	I	X	X	X	X
Biomass	I	ı		I	ı	I	ı	I	ł	ı)	X	X	X	X
Others	4	·	I	I	T	T	ï	ı	^с т	1	I	Х	X	X	X
Average Intensity	26	18	16	11	11	7	11	7	30	19	31	Х	Х	Х	Х

(1+ CO.an) Tabla C 13. Onf

			13	ible G.I	1 able G.13: Untario - GHG Emissions (kt CU2eq)	-011	HGEM	IISSIONS	(KI CO	2eq)					
Sources	1990	1990 1991 1992	1992		1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	24800	24800 26200 25400	25400	16500	16500 13500 14300 16400 20600 27200 28200 36200 33300 33100 37300 27700 37300 3770	14300	16400	20600	27200	28200	36200	33300	33100	37300	27700
Refined Petroleum															
Products	1130		710	13	139 278	348		308 356 1210	1210	1060	400	069	500	1110	720
Natural Gas	528	554	1270	155	0 1900 3	3750	3650	4290	4500	5620	5460	6040	6160	6600	5860
Nuclear	1				•	•		•	•		•				
Hydro	I				•	•					•	•			
Biomass		I		•	1	•		,	1				•		
Others	26	56	56 61	70	78	79		329	235	264	86 329 235 264 223		186 283	252	273
Total	26400	26400 27700 27400	27400	18300	18300 15800 18500 20500 25600 33100 35200 42300 40200 40100 45300 34600	18500	20500	25600	33100	35200	42300	40200	40100	45300	34600

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

			Table	ole G.14	I: Ontai	G.14: Ontario – Electricity Generation (GWh)	ectricity	v Gener	ation (((MWE					
Sources	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	26121	30298	26121 30298 27221 19	19452	16377	16677 19515 26310 34096 34809	19515	26310	34096		42442	38236	37951	37511	27593
Refined Petroleum															
Products	1377	1238	894	169	378	508	519	547	1657	1525	583	982	762	1289	826
Natural Gas	1597	1683	2996	3545	4302	7750	7892	8874	9838	12143	11283	12216	12959	12073	10644
Nuclear	59353	70773	66586	78509	91066	86216	77676	70209	59879	61473	59829	63128	62965	62003	76063
Hydro	40561	40561 37647 40151		40753	39311	38809	41662	39963	35416	37294	37908	37136	38438	36062	39500
Biomass	657	611	761	687	792	860	790	918	947	922	972	964	1020	881	954
Others	108	194	180	195	203	199	219	221	262	228	204	194	240	232	266
Total	1297731	42444	129773 142444 139788 143310 152430 151018 148271 147041 142094 148392 153221 152856 154336 150051 155847 120773 1422444 139788 143310 152430 151018 148271 147041 142094 148392 153221 152856 154336 150051 155847 155877 15587 15587 15587 15587 15587 15587 15587 15587 15587 15587 15	433101	1524301	1510181	48271	1470411	42094	148392	153221	152856	154336	150051	55847
			Table	ole G.15	: Ontar	G.15: Ontario – GHG Intensity (gCO ₂ eq/kWh)	HG Inte	nsity (g	CO2eq/	kWh)					
Sources	1990	1991 (1 1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	948	3 865	5 899	848	826	859	841	762	797	811	852	871	872	995	1004
Refined Petroleum															
Products	842	2 754	4 794	822	135	686	594	652	728	069	069	700	660	860	870
Natural Gas	330) 329	9 424	438	442	484	463	483	458	463	484	495	475	547	550
Nuclear	•		•			•	I	ı	ı	ı	I	I	1	I	I
Hydro	•		'				I	I	I	I	•	ı	I	ł	ł
Biomass		t				1	I	ı	•	I	I	I	I	I	I
Others	238	3 287	7 342	359	384	399	393	1490	899	1160	1090	957	1180	1090	1030
Average Intensity	204	t 195	5 196	127	104	123	138	174	233	237	276	263	259	302	222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

258

(kt CO ₂ eq)
GHG Emissions
Table G.16: Quebec -

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	1999	2000	2001	2002	2003	2004
Coal	I	1	ł	I	I	I	I		1	1	I	I	I	I	1
Refined Petroleum															
Products	1360	1360 374	794	144	310	188	184	215	1330	910	310	340	240	1500	1280
Natural Gas	75	75	75	75	82	80	81	81	76	63	72	68	72		74
Nuclear	ı	ı	I	I	ł	•	ı	I	ľ	t	1	I ,	I	1	ı
Hydro	I	I	I	I	I	н ,	I	I	I	I	1	1	.1	1	1
Biomass	ı	I.	1	ı	ı	ı	ı		ı	I	I	ı	I	I	· 1
Others	ı	ı	1	ı	ı	·	Ĩ	ı		ı	I	I	ı	I	I
Total	1430	448	869	219	392	268	265		296 1400	980	380		310	410 310 1580 1350	1350

Table G.17: Onebec – Electricity Generation (GWh)

			1 at	Table U.T. Queder - Executivity Uchelation (U.M.II)	י עשטע.										
Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	2000	2001	2002	2003	2004
Coal	0	0	0	0	0	0	0	0	0		0	0	0	0	0
Refined Petroleum															
Products	1707	1707 415 1015	1015	166	166 247	370	556	695	370 556 695 2329 1753	1753	869	1047	869 1047 894 2972 2472	2972	2472
Natural Gas	156	123	145	140	105	268	385	392	252	244	332	358	428	214	209
Nuclear	4070	3910	4600	4807	4807 5406	4511	5243	5243 4204	3814	3775	4886	4705	4886 4705 4530 3548	3548	4878
Hydro	1299391	385501	419831	500481	578511	679461	650161	606861	481481	29939138550141983150048157851167946165016160686148148162890173179164529170713170498166759	731791	645291	707131	704981	66759
Biomass	0	0	0	0	0	0	185	273	403	0 185 273 403 506 478 485 584 617 634	478	485	584	617	634
Others	11	0	0	0	0	4		S	4	×	13	7	0	0	0
Total	1358831	429981	358831429981477431		636091	730991	713861	662551	549501	55160163609173099171386166255154950169176179757171131177150177849174951	797571	711311	771501	778491	74951

(MM)
O2eq/k
(gC
ntensity
GIr
GHG]
1
Quebe
18: (
G.
Table

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	ı	. 1	ı	ı	ı	ı	ı	1	1	ı	1	ı	ı	1	1
Refined Petroleum															
Products	795	006	782	869	1257	508	331	309	569	520	360	330	270	510	520
Natural Gas	482	607	519	538	776	300	210	206	302	259	217	189	168	344	353
Nuclear	. 1	I	I	I	I	· •	ı	i	ı	ı	I	I	I	I	I
Hydro	I	I	I	ł	I	ı	ı	ł	I	•	I.	I	I	I	I
Biomass	I,	ı	4	ł	I	1	I	1	1	1	I		I	I	I
Others	I	ľ	ı	I	ı	١.	•	ı	ı	ı	I	•	I	-1	I
Average Intensity	11	, S	9	1	5	5	2	5	6	9	5	7	5	6	8

		•	Table G	.19: Ne	w Brun	swick -	GHG	G.19: New Brunswick - GHG Emissions (kt CO ₂ eq	ons (kt (CO ₂ eq)					
Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	1140	940 1030	1030	1190	2680	3040	3150	3030	3240	3130	2820	X	X	X	X
Refined Petroleum															
Products	4700	4700 4320 4950	4950	3830	3280	3560	2670	5090	5970	4820	5550	X	X	X	X
Natural Gas	I	I	I	I	I		ı	I	I	I	I	X	X	X	X
Nuclear	ı	ı	ı	ı	ł	1	ł	1	I	I	1	X	X	X	X
Hydro	4	1	1	I	I	I	I	I	1	1	ı	X	X	×	X
Biomass	ı	I	ı	ı	ı	•	I	•	I	ı	ı	X	X	X	X
Others	ı	I	I	I	ı	ı	I	ı	T N	I	I	Х	Х	Х	X
Total	5840	5840 5270 5980	5980	5010	5960	6600	5820	8120	9210	7950	8360	X	Х	Х	X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

_
(GWh)
9
Generation
Electricity
I
Brunswick
New
G.20:
Table

	N//T	1991	1990 1991 1992	1993	1994	2661	1996	1997	1998	1999	2000	2001	2002	2003	2004
	1285	1120	1226	1377	3118	3445	3551	3625	3901	3885	3607	3849	3462	4296	2999
Refined Petroleum															
-	6092	5718 6477	6477	4931	4249	4538	3308	6564	7687	6415	7586	8455	7184	6443	8384
Natural Gas	0	0	0	0	0	0	0	0	0	0	0	0	245	1331	1137
Nuclear	5338	5440	4833	5323	5239	1579	4591	3444	3773	4083	3959	4487	3757	4742	4299
	3533	3003	3011	3057	2773	2706	3532	2373	2862	3380	3293	2059	2251	3233	3013
Biomass	505	527	462	471	516	520	507	617	815	910	847	871	974	914	931
Others	0	0	0	0	0	0	0	0	0	6	ε	8	10	6	6
Total 1	6752 1	15808 16009	16009	15158	15895 1	12788	15488	16784	19038	18676	19295 1	19728	17883 2	20968 20772	20772

Table G.21: New Brunswick – GHG Intensity (gCO₂eq/kWh)

Coal 880 840 840 Refined Petroleum 772 756 764	840 756	840		1774	CUL	1996	1997	1998	1999	2000	2001	2002	2003	2004
-	756	20	860	860	880	890	840	830	810	780	X	X	X	X
	756													
		764	776	772	784	806	775	LLL	750	730	X	Х	Х	X
Natural Gas -	ı	ı	I.	ı		I	ı	ı	ł	1	X	X	Х	X
Nuclear -	I	I	I	I	ł	I	ı	I	I	I	X	X	X	X
Hydro -	I	I	ı	ı	ı	I	ı	ı	I		X	X	X	X
Biomass -	ı	ı	ı	I	ł	1	I	1	I	1	X	X	X	X
Others -	ı	1	1	1	1	ı	1	ı	ł	I	Х	X	Х	X
Average Intensity 348 3	333	374	331	375	516	376	484	484	426	433	Х	Х	Х	X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

tt CO ₂ eq)
Emissions (1
ia – GHG E
Nova Scot
Table G.22:

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	5050	5280	5390	5530	6100	5840	6510	6860	5890	6530	7590	X	X	X	X
Refined Petroleum															
Products	1790	1790 1720 1990	1990	1770	1020	1050	600	680	1920	1520	1230	X	X	X	X
Natural Gas	0		0	0	0	0	0	0	0	0	0	X	X	X	X
Nuclear	ı	I	ı	I	I	I	ı	ı	i	I	ı	X	X	X	X
Hydro	ı	ı	ı	ı	ı	I	1	ł	I	ı	Ι.	X	X	X	X
Biomass	I	I	ı	I	I	I	I	I		I	I	X	X	X	X
Others	0	0	0	0	0	0	0	0	0	0	0	X	X	X	X
Total	6830	7000	7380	7310	7120	0069	7100	7530	7800	8060	8820	X	Х	Х	X

(GWh)
Generation
- Electricity
a Scotia -
G.23: Nova
e G

		5-4	Table G	.23: No	va Scot	ia – El	lectricit	G.23: Nova Scotia - Electricity Generation (GWh)	ration (GWh)					
Sources	1990	1991	1992	1993	1994		1996		1998	1999	2000	2001	2002	2003	2004
Coal	5760	5760 5933 6079	6079	6337	7136	6987	7944	8367		7916	8959	9801	8576	7335	7567
Refined Petroleum															
Products	2233	2233 2113 2447	2447	2201	1290	1407	791	887	2475	1978	1547	1106		3618	3813
Natural Gas	0	0	0	0	0	0	0	0	0	0	0	0	1930	127	101
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydro	1181	1071	905	916	1054	937	1156	978	932	1018	924	748	1082	1142	961
Biomass	259	277	290	260	287	240	302	281	235	158	191	189	127	161	155
Others	0	0	0	0	0	0	0	0	19	9	4	5	8	8	0
Total	9432	9432 9394 9720	9720	9714	9767	9571	10193	10513	10780	9571 10193 10513 10780 11076 11624 11849 12146 12391	11624	11849	12146	12391	12597

262

Table G.24: Nova Scotia - GHG Intensity (gCO₂eq/kWh)

Sources	1990 1991 1992	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	88	890	890	870	860	840	820	820	830	830	850	x	×	×	X
Refined Petroleum															
Products	800	800 813 813	813	805	788	749	753	761	775	770	790	X	X	X	X
Natural Gas	I	I	I	I	I	ı	ľ	I	I	1	I • ,	X	X	X	X
Nuclear	I	'	° 1	ı	ı	ł	I	ı	I	ı	ı	X	X	X	X
Hydro	ï	ı	•	ı	ı	, I L	I	ı	ı	ı	ı	X	X	X	X
Biomass	ı	I	1	1	I	I	I	I	I	I	I	Х	X	X	X
Others	I	T	·	I	ŀ	I	ı	ı		1	ı	Х	Х	Х	X
Average Intensity	724	745	759	752	729	721	697	717	724	727	759	Х	Х	Х	X

GHG Emissions (kt CO.ed) Tahle G.25: Prince Edward Island -

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	I	1.		. 1	I		ı	I.	ı	ı	1	X	×	×	X
Refined Petroleum															
Products	101	91	50	73	57	38	24	31	10	19	55	X	X	X	X
Natural Gas	'	ı	ı	I	• 1	ı	ı	ı	ı	ı	ľ	X	X	X	X
Nuclear	I	I	I	I	I	ı	ı	ı	ı	I	I	X	X	X	X
Hydro	1	I	I	I	I	t	I	I	ŀ	I	1	X	X	X	X
Biomass	I	ı	I	•	ı	I	1	I	1	I	•	X	X	X	×
Others	-	'	ı	- 1	ı	ı	, I ,	I	ı	ı	'	X	Х	Х	X
Total	101	91	50	73	57	38	24	31	10	19	55	Х	Х	Х	X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionwww.manaraa.com

Table G.26: Prince Edward Island – Electricity Generation (GWh)

	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Refined Petroleum															
Products	81	72	34	59	41	23	11	22	4	10	49	43	20	43	13
Natural Gas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydro	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Others	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	81	72	34	59	41	23	11	22	4	10	49	43	- 20	43	13

		Tabl	Table G.27:	Prince	Edward	d Islan	l Island – GHG Intensity (G Inter	<u>60</u>	CO2eq/I	ζWh)				
Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	
Coal	0	0	0		0	0	0	0	0	0	0	×	X	X	X
Refined Petroleum															
Products	1250	1250 1270 1480	1480	1250	1250 1410	1660	2320	1390	2910	1890	1120		X	Х	X
Natural Gas	0	0	0	0	0	0	0	0	0	0	0		X	X	X
Nuclear	0	0	0	0	0	0	0	0	0	0	0		X	X	X
Hydro	0	0	0	0	0	0	0	0	0	0	0	X	X	X	X
Biomass	0	0	0	0	0	0	0	0	0	0	0	X	X	X	X
Others	0	0	0	0	0	0	0	0	0	0	0	X	Х	Х	X
Average Intensity	1250	1270	1480	1250	141	1660	2320	1390	2910	1890	1120	X	Х	Х	X

264

()
CO ₂ e
(kt C
Emissions
GHG
Newfoundland -
Table G.28:

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	0	0	0	0	0	0	0	0	0	0	0	×	×	×	×
Refined Petroleum															
Products	1610	1610 1280 148	1480	1340	720	1250	1160	1210	1020	810	800	X	X	X	X
Natural Gas	0	0	0	0	0	0	0	0	0	124	115	X	X	X	X
Nuclear	I	I	I	I	I	I	I	ŀ	. I	I	I	X	X	X	X
Hydro	1	ı.	I	1	ı	1	I	ł	ł	1	ı.	X	X	X	X
Biomass	Ι.	ı	l	I	I	ı	ł	ı	I	I	ľ	Χ	X	Х	X
Others	0	0	0	0	0	0	0	0	0	0	0	X	X	X	X
Total	1610	1280	1480	1340	720	1250	1160	1210	1020	940	920	Х	X	X	X

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	2004
Coal	0	0	0	0	0	0	0	0		0	0	0	0	0	0
Refined Petroleum															
Products	1978	1978 1534 1784	1784	1659		879 1626 1484 1573 1317	1484	1573	1317	971	1025	971 1025 2155 2436 2008	2436	2008	1706
Natural Gas	0	0	0	0	0	0	0	0	164	283	261	273	273	284	264
Nuclear	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydro	34687	34687 35410 34875	34875	39194	37606	36287	35292	40177	43640	41382	42313	38824	41416	39194 37606 36287 35292 40177 43640 41382 42313 38824 41416 39801 39589	39589
Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Others	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	36665	36665 36944 36659		40853	38485	37913	36776	41750	40853 38485 37913 36776 41750 45121 42636 43599 41252 44125 42093 41559	42636	43599	41252	44125	42093	41559

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

(h
kWl
2eq/
S S
6
nsity
ntei
75
GHG Ir
ī
nd
lla
Ĭ
fo
ew
Z
G.30
G
ble
Tal
•

Sources	1990	1990 1991 1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Coal	ı	1	ı	1	1	I	1	ı	-1	ı	I	X	X	×	X
Refined Petroleum															
Products	816	835	829	809	815	770	782	770	772	836	785	X	X	Х	X
Natural Gas	I	•	ı	I	ı	I	I	I	0	440	440	X	X	X	X
Nuclear	ł	I	I	I	I	,	I	1	ı	'	I	X	X	X	X
Hydro	ı	1	I	I	I	ı	ı	1	1	ı	ł	X	X	Х	X
Biomass	I	•	ı	1	ł	I	I	I	I	I	ı	X	X	X	X
Others	i.	1	'	ı	ı	I .	I	I	ı	I	I	Х	X	X	X
Average Intensity	44	35.	40	33	19	33	32	29	23	22	21	Х	X	Х	X

Appendix H

ICE Based Cogeneration Annual Simulation Results

The annual base case simulation results are presented in Tables H.1 - H.10. Summary results for the ICE based cogeneration case are presented in Tables H.11 - H.21 and the detailed cogeneration results are presented in Tables H.22 - H.79.

H.1 Simulation Results

	Test Cas	e House 1	Test Cas	e House 2	Test Cas	e House 3
	Prince George	Vancouver	Prince George	Vancouver	Prince George	Vancouver
Demand _{el} (kWh/yr)	17937	17659	17630	17469	15605	15342
Demand _{SH} (GJ/yr)	107.9	62.2	48.9	19.0	76.6	33.3
Fuel for SH (GJ/yr)	152.8	86.0	65.7	27.2	110.7	47.0
$\eta_{\text{Furnace}}(\%)$	77.3	77.3	77.7	77.7	76.4	76.4
Fuel for SH (m ³ /yr)	3998	2251	1720	711	2897	1230
Demand _{DHW} (GJ/yr)	11.7	11.7	13.9	13.9	11.8	11.8
Fuel for DHW (GJ/yr)	26.0	25.9	30.3	30.1	24.0	23.9
η _{DHW} (%)	51.1	51.1	50.6	50.6	55.0	55.0
Fuel for DHW (m ³ /yr)	681	678	792	787	628	624
Total Fuel (m ³ /yr)	4678	2929	2512	1498	3525	1854
Cost _{el,flat} (CAD/yr)	1135	1118	1116	1106	988	971
Cost _{el,TOU} (CAD/yr)	1198	1180	1181	1171	1042	1026
Cost _{NG} (CAD/yr)	1907	1194	1024	611	1437	756
Cost _{tot,flat} (CAD/yr)	3043	2312	2140	1717	2425	1727
Cost _{tot,TOU} (CAD/yr)	3105	2374	2205	1782	2480	1781
GHG _{el,avg} (tonnes/yr)	0.43	0.42	0.42	0.42	0.37	0.37
GHG _{el,high} (tonnes/yr)	6.73	6.62	6.61	6.55	5.85	5.75
GHG _{th} (tonnes/yr)	8.68	5.44	4.66	2.78	6.54	3.44
GHG _{tot,avg} (tonnes/yr)	9.12	5.86	5.09	3.20	6.92	3.81
GHG _{tot,high} (tonnes/yr)	15.41	12.06	11.27	9.33	12.40	9.19

Table H.1: Annual Base Case Simulation Results – British Columbia

	Test Case	e House 4	Test Cas	e House 5	Test Case	e House 6
	Calgary	Edmonton	Calgary	Edmonton	Calgary	Edmonton
Demand _{el} (kWh/yr)	10867	10911	11036	11084	9940	9988
Demand _{SH} (GJ/yr)	61.3	68.1	65.5	73.2	69.6	76.9
Fuel for SH (GJ/yr)	88.5	99.3	92.9	104.8	100.6	112.5
$\eta_{Furnace}$ (%)	74.9	74.9	76.2	76.2	74.9	74.9
Fuel for SH (m ³ /yr)	2317	2599	2432	2742	2633	2944
Demand _{DHW} (GJ/yr)	11.8	11.8	13.9	13.9	11.8	11.8
Fuel for DHW (GJ/yr)	24.0	24.0	27.8	27.9	24.1	24.1
η _{DHW} (%)	55.0	55.0	55.1	55.1	54.8	54.8
Fuel for DHW (m ³ /yr)	627	628	728	729	630	631
Total Fuel (m ³ /yr)	2944	3227	3160	3471	3263	3575
Cost _{el,flat} (CAD/yr)	838	841	851	855	766	770
Cost _{el,TOU} (CAD/yr)	878	876	893	894	809	807
Cost _{NG} (CAD/yr)	1139	1248	1222	1343	1262	1383
Cost _{tot,flat} (CAD/yr)	1976	2089	2073	2197	2028	2153
Cost _{tot,TOU} (CAD/yr)	2017	2124	2116	2236	2071	2189
GHG _{el,avg} (tonnes/yr)	9.36	9.39	9.50	9.54	8.56	8.60
GHG _{el,high} (tonnes/yr)	10.70	10.75	10.87	10.92	9.79	9.84
GHG _{th} (tonnes/yr)	5.46	5.99	5.87	6.44	6.06	6.64
GHG _{tot,avg} (tonnes/yr)	14.82	15.38	15.37	15.99	14.62	15.24
GHG _{tot,high} (tonnes/yr)	16.17	16.74	16.74	17.36	15.85	16.47

Table H.2: Annual Base Case Simulation Results – Alberta

	Test Case	House 7	Test Case	e House 8	Test Case	e House 9
	North Battleford	Regina	North Battleford	Regina	North Battleford	Regina
Demand _{el} (kWh/yr)	8974	8928	10020	9975	8457	8393
Demand _{SH} (GJ/yr)	79.0	70.7	78.1	70.0	95.9	84.6
Fuel for SH (GJ/yr)	116.0	104.3	111.6	100.5	140.7	124.3
η _{Furnace} (%)	73.1	73.1	75.0	75.0	73.1	73.1
Fuel for SH (m ³ /yr)	3037	2729	2921	2629	3682	3253
Demand _{DHW} (GJ/yr)	11.8	11.8	11.8	11.8	9.6	9.6
Fuel for DHW (GJ/yr)	24.2	24.1	24.1	24.0	20.2	20.2
η _{DHW} (%)	54.6	54.6	54.8	54.8	54.6	54.6
Fuel for DHW (m ³ /yr)	633	632	630	629	530	529
Total Fuel (m ³ /yr)	3669	3361	3551	3258	4212	3782
Cost _{el,flat} (CAD/yr)	807	803	901	897	760	755
Cost _{el,TOU} (CAD/yr)	852	848	950	946	809	803
Cost _{NG} (CAD/yr)	1245	1141	1205	1106	1429	1283
Cost _{tot,flat} (CAD/yr)	2052	1943	2106	2002	2189	2038
Cost _{tot,TOU} (CAD/yr)	2097.	1988	2155	2052	2239	2086
GHG _{el,avg} (tonnes/yr)	7.54	7.50	8.42	8.38	7.10	7.05
GHG _{el,high} (tonnes/yr)	10.22	10.17	11.41	11.36	9.63	9.56
GHG _{th} (tonnes/yr)	6.81	6.24	6.59	6.05	7.82	7.02
GHG _{tot,avg} (tonnes/yr)	14.35	13.74	15.01	14.43	14.92	14.07
GHG _{tot,high} (tonnes/yr)	17.03	16.41	18.00	17.41	17.45	16.58

Table H.3: Annual Base Case Simulation Results – Saskatchewan

	Test Case	House 10	Test Case	House 11	Test Case House 12	
	Le Pas	Winnipeg	Le Pas	Winnipeg	Le Pas	Winnipeg
Demand _{el} (kWh/yr)	10211	10108	8936	8816	8111	7978
Demand _{SH} (GJ/yr)	88.9	71.4	114.0	93.8	132.6	110.0
Fuel for SH (GJ/yr)	122.3	97.9	156.9	128.6	182.5	150.8
η_{Furnace} (%)	78.0	78.0	78.0	78.0	78.0	78.0
Fuel for SH (m ³ /yr)	3200	2561	4107	3364	4776	3947
Demand _{DHW} (GJ/yr)	11.8	11.8	11.8	11.8	9.6	9.6
Fuel for DHW (GJ/yr)	24.3	24.2	22.7	22.7	18.8	18.7
η _{DHW} (%)	54.3	54.3	58.2	58.2	59.2	59.2
Fuel for DHW (m ³ /yr)	637	634	595	593	492	490
Total Fuel (m ³ /yr)	3837	3196	4702	3957	5269	4437
Cost _{el,flat} (CAD/yr)	581	575	508	502	462	454
Cost _{el,TOU} (CAD/yr)	615	609	538	531	492	484
Cost _{NG} (CAD/yr)	1968	1639	2412	2030	2703	2276
Cost _{tot,flat} (CAD/yr)	2549	2215	2921	2532	3164	2730
Cost _{tot,TOU} (CAD/yr)	2584	2249	2950	2561	3194	2760
GHG _{el,avg} (tonnes/yr)	0.32	0.31	0.28	0.27	0.25	0.25
GHG _{el,high} (tonnes/yr)	12.18	12.06	10.66	10.52	9.68	9.52
GHG _{th} (tonnes/yr)	7.12	5.93	8.73	7.35	9.78	8.24
GHG _{tot,avg} (tonnes/yr)	7.44	6.25	9.01	7.62	10.03	8.48
GHG _{tot,high} (tonnes/yr)	19.30	17.99	19.39	17.86	19.46	17.75

Table H.4: Annual Base Case Simulation Results – Manitoba

	Test Case	House 13	Test Case	House 14	Test Case House 15	
	Ottawa	Toronto	Ottawa	Toronto	Ottawa	Toronto
Demand _{el} (kWh/yr)	9822	9793	8887	8814	7775	7719
Demand _{SH} (GJ/yr)	36.0	30.9	79.7	67.2	59.4	49.7
Fuel for SH (GJ/yr)	47.1	40.5	104.2	87.7	77.8	65.0
$\eta_{\text{Furnace}}(\%)$	82.4	82.4	81.5	81.5	81.6	81.6
Fuel for SH (m ³ /yr)	1232	1060	2728	2294	2035	1700
Demand _{DHW} (GJ/yr)	11.8	11.8	11.8	11.8	11.8	11.8
Fuel for DHW (GJ/yr)	23.7	23.6	23.0	23.0	23.0	22.9
η _{DHW} (%)	55.6	55.6	57.1	57.1	57.4	57.4
Fuel for DHW (m ³ /yr)	619	618	603	602	602	601
Total Fuel (m ³ /yr)	1852	1678	3331	2896	2637	2301
Cost _{el,flat} (CAD/yr)	982	979	889	881	777	. 772
Cost _{el,TOU} (CAD/yr)	1046	1043	945	938	827	821
Cost _{NG} (CAD/yr)	912	827	1641	1427	1299	1134
Cost _{tot,flat} (CAD/yr)	1894	1806	2530	2308	2077	1906
Cost _{tot,TOU} (CAD/yr)	1959	1870	2586	2365	2126	1955
GHG _{el,avg} (tonnes/yr)	2.18	2.17	1.97	1.96	1.73	1.71
GHG _{el,high} (tonnes/yr)	9.37	9.34	8.48	8.41	7.42	7.36
GHG _{th} (tonnes/yr)	3.44	3.11	6.18	5.38	4.90	4.27
GHG _{tot,avg} (tonnes/yr)	5.62	5.29	8.16	7.33	6.62	5.99
GHG _{tot,high} (tonnes/yr)	12.81	12.46	14.66	13.78	12.31	11.64

Table H.5: Annual Base Case Simulation Results – Ontario

	Test Case	House 16	Test Case	House 17	Test Case House 18	
	Montreal	Quebec	Montreal	Quebec	Montreal	Quebec
Demand _{el} (kWh/yr)	8772	7958	6501	6511	7946	8910
Demand _{SH} (GJ/yr)	41.9	59.4	75.6	77.2	57.3	66.7
Fuel for SH (GJ/yr)	59.1	82.4	106.4	109.1	80.0	93.6
$\eta_{Furnace}$ (%)	73.9	74.5	73.7	73.7	74.5	73.9
Fuel for SH (litres/yr)	1539	2147	2773	2843	2083	2439
Demand _{DHW} (GJ/yr)	11.8	11.8	11.8	11.8	11.8	11.8
Fuel for DHW (GJ/yr)	17.7	17.1	17.3	17.4	17.1	17.8
η _{DHW} (%)	74.3	77.3	76.2	76.2	77.3	74.3
Fuel for DHW (kWh/yr)	4918	4762	4816	4822	4758	4935
Total Fuel (litres/yr)	1539	2147	2773	2843	2083	2439
Cost _{el,flat} (CAD/yr)	715	664	591	592	663	723
Cost _{el,TOU} (CAD/yr)	760	709	630	630	708	769
Cost _{NG} (CAD/yr)	1108	1383	1997	1831	1500	1571
Cost _{tot,flat} (CAD/yr)	1822	2047	2588	2423	2163	2294
Cost _{tot,TOU} (CAD/yr)	1868	2092	2626	2461	2208	2340
GHG _{el,avg} (tonnes/yr)	0.11	0.10	0.09	0.09	0.10	0.11
GHG _{el,high} (tonnes/yr)	7.52	6.98	6.21	6.22	6.97	7.60
GHG _{th} (tonnes/yr)	4.36	6.09	7.86	8.06	5.90	6.91
GHG _{tot,avg} (tonnes/yr)	4.47	6.19	7.95	8.15	6.01	7.03
GHG _{tot,high} (tonnes/yr)	11.88	13.07	14.07	14.28	12.88	14.52

 Table H.6: Annual Base Case Simulation Results – Quebec

	Test Case	House 19	Test Case	House 20	Test Case	House 21
	Fredericton	Saint John	Fredericton	Saint John	Fredericton	Saint John
Demand _{el} (kWh/yr)	8259	8249	9407	9399	8071	8132
Demand _{SH} (GJ/yr)	114.7	143.5	69.6	68.2	109.6	120.7
Fuel for SH (GJ/yr)	206.1	203.8	99.9	97.9	156.2	171.8
η _{Furnace} (%)	73.8	73.8	73.1	73.1	73.7	73.7
Fuel for SH (litres/yr)	5370	5310	2604	2552	4071	4476
Demand _{DHW} (GJ/yr)	11.8	11.8	11.8	11.8	9.7	9.7
Fuel for DHW (GJ/yr)	16.9	16.9	17.2	17.2	14.2	14.2
η _{DHW} (%)	78.3	78.3	76.9	76.9	78.0	78.0
Fuel for DHW (kWh/yr)	4702	4708	4786	4791	3949	3957
Total Fuel (litres/yr)	5370	5310	2604	2552	4071	4476
Cost _{el,flat} (CAD/yr)	1172	1171	1283	1283	1087	1093
Cost _{el,TOU} (CAD/yr)	1250	1250	1370	1369	1163	1169
Cost _{NG} (CAD/yr)	3952	3839	1917	1845	2996	3236
Cost _{tot,flat} (CAD/yr)	5124	5010	3200	3128	4083	4329
Cost _{tot,TOU} (CAD/yr)	5202	5089	3287	3214	4159	4405
GHG _{el,avg} (tonnes/yr)	5.61	5.61	6.15	6.14	5.20	5.23
GHG _{el,high} (tonnes/yr)	10.46	10.46	11.45	11.45	9.70	9.76
GHG _{th} (tonnes/yr)	15.22	15.05	7.38	7.23	11.54	12.69
GHG _{tot,avg} (tonnes/yr)	20.83	20.66	13.53	13.38	16.74	17.92
GHG _{tot,high} (tonnes/yr)	25.68	25.51	18.84	18.68	21.24	22.44

 Table H.7: Annual Base Case Simulation Results – New Brunswick

	Test Case	House 22	Test Case	House 23	Test Case	House 24
	Halifax	Sydney	Halifax	Sydney	Halifax	Sydney
Demand _{el} (kWh/yr)	10127	10200	8027	8173	8703	8828
Demand _{SH} (GJ/yr)	54.8	68.5	107.7	135.0	89.4	113.0
Fuel for SH (GJ/yr)	72.8	90.0	144.0	178.4	119.0	148.6
$\eta_{\text{Furnace}}(\%)$	78.7	78.7	78.5	78.5	78.7	78.7
Fuel for SH (litres/yr)	1897	2345	3751	4648	3100	3873
Demand _{DHW} (GJ/yr)	11.8	11.8	11.8	11.7	11.8	11.8
Fuel for DHW (GJ/yr)	23.5	23.6	21.6	21.6	22.0	22.0
η _{DHW} (%)	56.0	56.0	61.2	61.2	59.9	59.9
Fuel for DHW (litres/yr)	613	614	562	563	6110 [*]	6125*
Total Fuel (litres/yr)	2510	2959	4312	5211	3100	3873
Cost _{el,flat} (CAD/yr)	1026	1033	813	828	1501	1515
Cost _{el,TOU} (CAD/yr)	678	683	541	550	1004	1013
Cost _{NG} (CAD/yr)	1792	2110	3079	3715	2213	2761
Cost _{tot,flat} (CAD/yr)	2818	3143	3892	4543	3714	4276
Cost _{tot,TOU} (CAD/yr)	2470	2793	3620	4266	3218	3774
GHG _{el,avg} (tonnes/yr)	7.69	7.74	6.09	6.20	11.24	11.35
GHG _{el,high} (tonnes/yr)	9.28	9.34	7.35	7.49	13.57	13.70
GHG _{th} (tonnes/yr)	7.11	8.39	12.22	14.77	8.79	10.98
GHG _{tot,avg} (tonnes/yr)	14.80	16.13	18.32	20.97	20.03	22.33
GHG _{tot,high} (tonnes/yr)	16.39	17.73	19.58	22.26	22.36	24.67

Table H.8: Annual Base Case Simulation Results - Nova Scotia

* in kWh since test case house 24 uses electricity as the DHW fuel, while the remaining Nova Scotia test case houses use oil as the DHW fuel.

	Test Case House 25	Test Case House 26	Test Case House 27
	Charlottetown	Charlottetown	Charlottetown
Demand _{el} (kWh/yr)	7426	7857	7463
Demand _{SH} (GJ/yr)	50.8	59.0	122.8
Fuel for SH (GJ/yr)	66.5	77.9	164.7
$\eta_{\text{Furnace}}(\%)$	79.0	78.7	77.7
Fuel for SH (litres/yr)	1733	2029	4291
Demand _{DHW} (GJ/yr)	11.7	11.7	11.8
Fuel for DHW (GJ/yr)	28.4	26.7	24.3
η _{DHW} (%)	46.1	49.2	54.3
Fuel for DHW (litres/yr)	741	696	634
Total Fuel (litres/yr)	2474	2725	4925
Cost _{el,flat} (CAD/yr)	793	839	797
Cost _{el,TOU} (CAD/yr)	843	892	844
Cost _{NG} (CAD/yr)	1724	1900	3432
Cost _{tot,flat} (CAD/yr)	2517	2739	4230
Cost _{tot,TOU} (CAD/yr)	2567	2791	4277
GHG _{el,avg} (tonnes/yr)	8.32	8.80	8.36
GHG _{el,high} (tonnes/yr)	8.99	9.52	9.04
GHG _{th} (tonnes/yr)	7.01	7.73	13.96
GHG _{tot,avg} (tonnes/yr)	15.33	16.53	22.32
GHG _{tot,high} (tonnes/yr)	16.00	17.24	23.00

Table H.9: Annual Base Case Simulation Results - Prince Edward Island

	Test Case	House 28	Test Case	House 29	Test Case	House 30
	Goose Bay	St. John's	Goose Bay	St. John's	Goose Bay	St. John's
Demand _{el} (kWh/yr)	9917	9764	8984	8810	9582	9449
Demand _{SH} (GJ/yr)	94.4	66.6	107.9	76.3	84.9	60.8
Fuel for SH (GJ/yr)	124.8	88.5	142.2	101.0	109.2	78.6
$\eta_{\text{Furnace}}(\%)$	78.4	78.4	78.6	78.6	80.3	80.3
Fuel for SH (litres/yr)	3252	2305	3705	2631	2846	2049
Demand _{DHW} (GJ/yr)	11.8	11.8	11.8	11.8	13.9	13.9
Fuel for DHW (GJ/yr)	19.6	19.6	19.2	19.2	22.6	22.6
η _{DHW} (%)	67.4	67.4	68.8	68.8	67.9	67.9
Fuel for DHW (kWh/yr)	5452	5439	5343	5328	6276	6267
Total Fuel (litres/yr)	3252	2305	3705	2631	2846	2049
Cost _{el,flat} (CAD/yr)	1371	1356	1278	1261	1415	1402
Cost _{el,TOU} (CAD/yr)	1456	1442	1357	1342	1507	1494
Cost _{NG} (CAD/yr)	2267	1607	2582	1834	1984	1428
Cost _{tot,flat} (CAD/yr)	3638	2963	3860	3095	3398	2830
Cost _{tot,TOU} (CAD/yr)	3723	3049	3939	3176	3491	2922
GHG _{el,avg} (tonnes/yr)	0.32	0.32	0.30	0.30	0.33	0.33
GHG _{el,high} (tonnes/yr)	11.97	11.84	11.16	11.01	12.35	12.24
GHG _{th} (tonnes/yr)	9.22	6.53	10.50	7.46	8.07	5.81
GHG _{tot,avg} (tonnes/yr)	9.54	6.85	10.80	7.76	8.40	6.14
GHG _{tot,high} (tonnes/yr)	21.19	18.38	21.66	18.47	20.42	18.05

Table H.10: Annual Base Case Simulation Results - Newfoundland

The change in total fuel cost (natural gas/propane and electricity) compared to the base case is calculated according to Equation H.1 where a positive value indicates a reduction in fuel cost.

$$\Delta \cos t = \frac{\cos t_{BC} - \cos t_{ICE}}{\cos t_{BC}} \times 100\%$$
 [H.1]

Where:

 $\Delta \text{cost} = \text{change in fuel cost relative to base case cost (\%)}$ $cost_{BC}$ = total fuel cost in base case simulation (CAD/yr) $cost_{ICE}$ = total fuel cost in ICE based cogeneration simulation (CAD/yr)

Similarly, the total GHG emissions (from electricity and fuel) compared to the base case is calculated according to Equation H.2 where a positive value indicates a reduction in GHG emissions. Two estimates of the total GHG emissions are given using the average and high intensity electricity GHG emissions as discussed in Section 9.2.

$$\Delta GHG = \frac{GHG_{BC} - GHG_{ICE}}{GHG_{BC}} \times 100\%$$
 [H.2]

Where:

 Δ GHG = change in GHG emissions relative to base case GHG emissions (%) GHG_{BC} = total GHG emissions in base case simulation (tonnes/yr) GHG_{ICE} = total GHG emissions in ICE based cogeneration simulation (tonnes/yr)

A summary of the ICE based cogeneration results are presented in Tables H.11 – H.21.

	Indiastan	Test Cas	e House 1	Test Case House 2		Test Case House 3	
System	System Indicator (%)	Prince George	Vancouver	Prince George	Vancouver	Prince George	Vancouver
1.01337	Δ Cost	-3.9	-13.9	-15.2	-30.9	-15.2	-29.8
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-25.4	-56.4	-62.4	-130.4	-49.3	-107.5
JUUKg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	0.3	-7.2	-8.2	-19.7	-8.9	-19.3
1.01337	$\Delta \operatorname{Cost}$	-5.5	-14.4	-16.0	-31.0	-16.9	-30.2
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-27.8	-56.9	-63.4	-129.8	-52.0	-108.3
	$\Delta \mathrm{GHG}_{\mathrm{max}}$	-1.2	-7.6	-9.0	-19.8	-10.4	-19.5
0.01.00	Δ Cost	-10.8	-36.2	-42.5	-80.8	-33.8	-71.6
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-52.3	-122.0	-141.6	-296.9	-98.4	-230.4
JUU Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	-2.7	-22.4	-27.8	-56.4	-21.9	-50.0
0.01337	Δ Cost	-13.0	-36.2	-42.6	-81.0	-34.5	-71.9
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-55.6	-122.1	-141.8	-297.3	-99.5	-230.6
	$\Delta \mathrm{GHG}_{\mathrm{max}}$	-4.8	-22.5	-27.9	-56.7	-22.6	-50.3

 Table H.11: Summary of Annual ICE Based Cogeneration Simulation Results –

British Columbia

Table H.12: Summary of Annual ICE Based Cogeneration Simulation Results -

Alberta

Sustam	Indicator	Test Cas	e House 4	Test Cas	e House 5	Test Cas	Test Case House 6	
System	(%)	Calgary	Edmonton	Calgary	Edmonton	Calgary	Edmonton	
1.01.11	$\Delta \operatorname{Cost}$	-14.0	-11.1	-10.9	-8.2	-7.7	-9.0	
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	10.4	12.2	11.1	12.8	13.8	12.9	
JUUKg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	14.0	15.7	14.4	16.0	17.1	16.3	
1.01.00	Δ Cost	-14.8	-10.9	-10.8	-9.5	-10.3	-9.0	
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	9.9	12.4	11.1	12.0	12.1	12.9	
-50 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	13.6	15.9	14.4	15.3	15.6	16.4	
2.011	Δ Cost	-30.7	-27.5	-27.6	-25.3	-23.1	-24.2	
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	11.4	12.7	11.6	12.3	13.9	12.4	
500 Kg	ΔGHG_{max}	17.6	18.7	17.5	18.0	19.7	18.2	
2.0.1-W	Δ Cost	-32.1	-29.7	-29.8	-27.0	-30.9	-26.2	
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	10.5	11.2	10.1	11.1	8.7	11.0	
TJUNG	$\Delta \mathrm{GHG}_{\mathrm{max}}$	16.8	17.4	16.1	17.0	14.8	16.9	

	Indicator	Test Case	e House 7	Test Case	e House 8	Test Case House 9	
System	(%)	North Battleford	Regina	North Battleford	Regina	North Battleford	Regina
1.01.07	Δ Cost	-5.0	-6.5	-4.9	-7.1	-3.3	-5.5
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	10.3	9.6	10.0	8.8	10.3	9.3
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	18.9	18.6	18.2	17.4	18.4	17.9
1.01-337	Δ Cost	-6.0	-7.9	-5.7	-8.1	-4.2	-6.7
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	9.5	8.5	9.4	8.0	9.7	8.4
4.50 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	18.3	17.7	17.7	16.8	17.8	17.1
2.01.W	Δ Cost	-18.5	-23.0	-17.9	-22.6	-15.0	-20.5
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	5.9	3.3	7.3	4.6	6.5	3.3
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	19.7	18.0	21.1	19.2	19.2	17.0
2013	Δ Cost	-19.6	-24.0	-18.7	-23.2	-15.9	-21.1
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	5.0	2.5	6.6	4.1	5.8	2.8
-50 Kg	$\Delta \text{GHG}_{\text{max}}$	18.9	17.2	20.6	18.8	18.6	16.6

 Table H.13: Summary of Annual ICE Based Cogeneration Simulation Results –

Saskatchewan

 Table H.14: Summary of Annual ICE Based Cogeneration Simulation Results –

 Manitoba

Sustam	Indicator	Test Case	e House 10	Test Case	e House 11	Test Case House 12	
System	(%)	Le Pas	Winnipeg	Le Pas	Winnipeg	Le Pas	Winnipeg
1.0.1-337	Δ Cost	-23.1	-35.0	-20.3	-28.1	-22.2	-28.7
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-43.1	-61.6	-35.3	-47.5	-35.1	-45.1
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	20.4	17.4	19.2	18.6	15.2	15.3
	$\Delta \operatorname{Cost}$	-23.1	-35.9	-21.9	-30.1	-22.6	-29.8
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-43.1	-63.0	-37.2	-50.0	-35.5	-46.3
-30 Kg	$\Delta \text{GHG}_{\text{max}}$	20.5	17.0	18.4	17.6	15.1	14.7
2.0.1-W	Δ Cost	-44.4	-66.4	-38.1	-54.3	-36.5	-49.9
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-76.7	-110.7	-61.1	-84.5	-55.2	-73.9
500 Kg	$\Delta \text{GHG}_{\text{max}}$	25.9	20.5	22.1	18.3	17.9	14.9
2.01-32/	Δ Cost	-47.8	-69.3	-39.7	-56.0	-37.6	-51.0
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-80.9	-114.4	-63.0	-86.5	-56.5	-75.2
-50 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	24.2	19.2	21.2	17.4	17.2	14.3

Sustam	Indicator	Test Case	e House 13	Test Case	e House 14	Test Case	e House 15
System	(%)	Ottawa	Toronto	Ottawa	Toronto	Ottawa	Toronto
1.0.1-337	Δ Cost	-24.5	-26.4	-9.4	-11.4	-23.8	-28.6
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-46.5	-50.2	-21.7	-25.3	-40.9	-48.3
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	11.6	11.4	16.1	16.1	10.6	9.2
1.01.337	Δ Cost	-24.4	-25.6	-8.1	-10.0	-25.6	-29.7
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-46.5	-49.2	-20.1	-23.6	-43.0	-49.6
-10 Kg	$\Delta \text{GHG}_{\text{max}}$	11.7	11.8	16.9	17.0	9.3	8.3
2.01-337	$\Delta \operatorname{Cost}$	-58.9	-66.1	-26.8	-34.8	-44.8	-52.1
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-98.8	-110.5	-46.9	-58.4	-70.2	-81.6
500 Kg	$\Delta \text{GHG}_{\text{max}}$	6.6	4.3	14.9	12.1	6.3	4.3
2.01-337	Δ Cost	-58.9	-66.3	-26.1	-33.8	-46.7	-52.6
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-98.9	-110.7	-46.0	-57.3	-72.6	-82.1
-50 Kg	$\Delta \text{GHG}_{\text{max}}$	6.5	4.1	15.4	12.7	5.1	4.1

Table H.15: Summary of Annual ICE Based Cogeneration Simulation Results -

Ontario

Table H.16: Summary of Annual ICE Based Cogeneration Simulation Results -

Quebec

System	Indicator	Test Case	House 16	Test Case	House 17	Test Case	House 18
System	(%)	Montreal	Quebec	Montreal	Quebec	Montreal	Quebec
1.01.00	Δ Cost	-120.5	-110.8	-90.8	-105.6	-98.1	-108.9
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-113.4	-67.1	-50.8	-48.5	-70.9	-62.7
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	5.9	10.8	9.3	9.8	10.1	9.7
10130	$\Delta \operatorname{Cost}$	-132.5	-114.7	-94.1	-109.3	-103.5	-109.7
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-125.4	-70.2	-53.5	-51.2	-75.7	-63.4
4.50 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	1.3	9.2	7.8	8.3	7.8	9.4
	Δ Cost	-199.9	-170.2	-132.0	-153.4	-150.5	-162.3
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-198.4	-118.2	-83.5	-82.9	-120.4	-108.1
500 Kg	$\Delta \text{GHG}_{\text{max}}$	-15.4	-5.1	-4.2	-4.9	-4.6	-3.3
2.01-33	Δ Cost	-201.6	-170.0	-135.8	-155.8	-152.3	-166.2
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-201.2	-119.2	-88.9	-87.2	-123.0	-113.0
TJUKg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	-16.5	-5.6	-7.2	-7.3	-5.8	-5.7

	Indicator	Test Case	House 19	Test Case	House 20	Test Case	House 21
System	(%)	Fredericton	Saint John	Fredericton	Saint John	Fredericton	Saint John
1.01.117	Δ Cost	-104.3	-106.7	-118.1	-118.1	-113.6	-109.6
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	10.4	10.3	5.5	5.5	6.4	9.0
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	23.6	23.2	25.4	25.4	21.5	22.8
1.0137	Δ Cost	-105.3	-107.4	-119.6	-119.6	-115.6	-110.3
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	10.0	10.0	4.9	4.9	5.5	8.8
430 Kg	$\Delta \text{GHG}_{\text{max}}$	23.2	23.0	25.0	25.0	20.9	22.6
2.01111	$\Delta \operatorname{Cost}$	-137.8	-131.8	-172.2	-172.2	-153.9	-143.0
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	1.6	5.2	-10.0	-10.0	-4.9	0.6
JUU Kg	$\Delta \text{GHG}_{\text{max}}$	19.7	22.6	19.6	19.6	16.6	19.9
2.01-337	$\Delta \operatorname{Cost}$	-131.7	-126.9	-172.2	-172.2	-150.8	-139.0
2.0 kW, 450 kg	ΔGHG_{avg}	1.9	5.2	-10.7	-10.7	-5.5	0.4
+30 Ng	$\Delta \mathrm{GHG}_{\mathrm{max}}$	19.9	22.7	19.1	19.1	16.1	19.8

Table H.17: Summary of Annual ICE Based Cogeneration Simulation Results -

New Brunswick

Table H.18: Summary of Annual ICE Based Cogeneration Simulation Results -

Nova Scotia

System	Indicator	Test Case	e House 22	Test Case	e House 23	Test Case	e House 24
System	(%)	Halifax	Sydney	Halifax	Sydney	Halifax	Sydney
1.01.00	Δ Cost	-133.5	-122.0	-128.2	-121.4	-117.7	-106.9
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	10.1	13.3	12.0	13.6	24.6	26.5
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	14.9	17.5	15.8	16.9	30.5	31.7
1.01.11	$\Delta \operatorname{Cost}$	-135.6	-124.6	-131.7	-123.5	-119.9	-108.4
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	9.2	12.3	10.8	12.9	23.9	26.1
	$\Delta \mathrm{GHG}_{\mathrm{max}}$	14.1	16.5	14.7	16.2	29.9	31.2
2.01.11	$\Delta \operatorname{Cost}$	-201.8	-181.1	-174.0	-152.4	-167.6	-144.9
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	0.5	5.4	3.9	10.1	17.2	21.9
JUUKg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	9.1	12.9	9.9	15.0	25.4	29.0
2.0.1-337	Δ Cost	-202.6	-180.3	-172.1	-149.3	-168.0	-143.8
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-0.1	5.2	2.9	9.4	15.9	21.1
-50 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	8.6	12.7	8.9	14.3	24.3	28.2

Sustam	Indicator	Test Case House 25	Test Case House 26	Test Case House 27
System	(%)	Charlottetown	Charlottetown	Charlottetown
1.01.337	Δ Cost	-51.6	-47.4	-41.3
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	21.4	22.1	20.0
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	23.6	24.1	21.6
1.01.007	Δ Cost	-53.5	-48.2	-41.8
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	20.4	21.5	19.8
4.50 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	22.6	23.5	21.4
2011	$\Delta \operatorname{Cost}$	-90.5	-81.9	-62.2
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	13.9	16.8	17.4
JUU Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	17.4	20.0	19.8
0.0111	Δ Cost	-90.9	-82.1	-60.0
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	13.4	16.3	16.9
-JU Ng	$\Delta \mathrm{GHG}_{\mathrm{max}}$	16.9	19.5	19.2

Table H.19: Summary of Annual ICE Based Cogeneration Simulation Results -

Prince Edward Island

 Table H.20: Summary of Annual ICE Based Cogeneration Simulation Results –

 Newfoundland

	Indiastan	Test Case House 28		Test Case	e House 29	Test Case House 30	
System	Indicator (%)	Goose Bay	St. John's	Goose Bay	St. John's	Goose Bay	St. John's
1.01.00	Δ Cost	-82.2	-81.8	-79.9	-77.6	-79.3	-81.8
1.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-36.0	-52.3	-27.3	-39.1	-41.7	-62.2
500 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	25.2	27.7	25.9	29.3	28.1	29.4
1.01.337	Δ Cost	-85.7	-82.1	-80.9	-81.1	-84.1	-82.6
1.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-38.8	-52.4	-28.0	-41.9	-45.7	-62.9
430 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	23.9	27.3	25.6	28.0	26.5	29.0
0.01.00	$\Delta \operatorname{Cost}$	-114.7	-127.4	-105.2	-116.6	-119.7	-131.8
2.0 kW, 300 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-64.5	-98.9	-47.6	-75.3	-79.0	-116.5
300 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	22.4	21.8	24.2	23.8	23.0	22.6
2.01.337	Δ Cost	-116.1	-126.0	-107.4	-115.9	-117.9	-130.8
2.0 kW, 450 kg	$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-67.3	-98.1	-51.1	-75.4	-79.1	-115.9
+50 Kg	$\Delta \mathrm{GHG}_{\mathrm{max}}$	21.2	22.1	22.5	23.8	23.0	22.8

Indicator (%)	Test Case House 1	Test Case House 2	Test Case House 3
	Prince George	Prince George	Prince George
Δ Cost	-28.4	-75.2	-47.8
$\Delta \mathrm{GHG}_{\mathrm{avg}}$	-88.0	-220.4	-130.2
$\Delta \mathrm{GHG}_{\mathrm{max}}$	-16.8	-53.7	-32.7

 Table H.21: Summary of Annual ICE Base Cogeneration Simulation Results –

Prince George, 3.0 kW ICE, 1000 kg Thermal Storage

The results of the simulations using a 3.0 kW ICE and a 1000 kg thermal storage tank in the Prince George test case houses illustrate several important points:

- Due to the high electrical demand of test case house 1 and test case house 2 (>19,000 kWh/year), the 3.0 kW ICE is able to meet more of the electrical demand compared to the 1.0 kW and 2.0 kW systems.
- Due to the high space heating demand of test case house 1 and test case house 3 and the higher thermal output of the ICE based cogeneration system, relative to the 1.0 kW and 2.0 kW systems, the larger thermal storage tank is beneficial in that it can store more of the thermal energy generated by the ICE based cogeneration.
- Depending on the test case house specific electrical and thermal demands, different combinations of ICE capacity and thermal storage capacity affect the cost and GHG emissions profile.
- Because the range of electrical and thermal demands of the test case houses is large (10,000 kWh/year to 20,000 kWh/year and 20 GJ to 145 GJ) the performance of the systems tested is variable because in some cases, the combinations of ICE and thermal storage capacities are either over or under sized. The results of these Prince George simulation highlight the need for further

optimization studies to be performed to determine the most suitable ICE and thermal storage capacities based on the test case house specific electrical and thermal demands.

The detailed simulation results for the ICE based cogeneration case are presented in Tables H.22 – H.79.

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	19246	19233	19286	19343
Demand _{el,grid} (kWh/yr)	11229	11218	5551	5604
ICE _{Output,el} (kWh/yr)	8016	8015	13735	13740
ICE _{Output,th} (GJ/yr)	76.5	76.5	137.1	137.2
BB _{Output} (GJ/yr)	73.5	77.2	24.4	29.2
Heat Dump (GJ/yr)	32.1	36.1	44.2	49.2
Demand _{SH} (GJ/yr)	107.0	106.8	106.4	106.3
Demand _{DHW} (GJ/yr)	12.1	12.1	12.2	12.2
η_{el} (%)	23.2	23.2	21.3	21.3
η _{CHP} (%)	62.3	62.3	44.5	44.6
Cost _{el,flat} (CAD/yr)	711	710	351	355
Cost _{el,TOU} (CAD/yr)	771	770	393	397
Total Fuel (m ³ /yr)	6012	6131	7407	7566
Cost _{fuel} (CAD/yr)	2451	2500	3020	3085
Cost _{tot,flat} (CAD/yr)	3162	3210	3371	3440
Cost _{tot,TOU} (CAD/yr)	3222	3270	3413	3482
GHG _{el,avg} (tonnes/yr)	0.27	0.27	0.13	0.13
GHG _{el,high} (tonnes/yr)	4.21	4.21	2.08	2.10
GHG _{th} (tonnes/yr)	11.16	11.38	13.75	14.05
GHG _{tot,avg} (tonnes/yr)	11.43	11.65	13.88	14.18
GHG _{tot,high} (tonnes/yr)	15.37	15.59	15.83	16.15

 Table H.22: Test Case House 1, Prince George – ICE Based Cogeneration Annual

 Simulation Results

285

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L				
Demand _{el} (kWh/yr)	19202	19273	19256	19266				
Demand _{el,grid} (kWh/yr)	10710	10774	4998	5004				
ICE _{Output,el} (kWh/yr)	8492	8498	14258	14262				
ICE _{Output,th} (GJ/yr)	80.4	80.5	141.3	141.4				
BB _{Output} (GJ/yr)	29.6	30.0	0.0	0.0				
Heat Dump (GJ/yr)	37.3	38.4	68.3	68.5				
Demand _{SH} (GJ/yr)	61.6	60.9	61.7	61.5				
Demand _{DHW} (GJ/yr)	12.4	12.4	12.7	12.7				
η_{el} (%)	23.2	23.2	21.0	21.0				
η _{CHP} (%)	60.5	60.7	42.7	42.7				
Cost _{el,flat} (CAD/yr)	678	682	316	317				
Cost _{el,TOU} (CAD/yr)	736	740	355	356				
Total Fuel (m ³ /yr)	4798	4813	6945	6946				
Cost _{fuel} (CAD/yr)	1956	1962	2831	2832				
Cost _{tot,flat} (CAD/yr)	2634	2644	3148	3149				
Cost _{tot,TOU} (CAD/yr)	2692	2702	3187	3188				
GHG _{el,avg} (tonnes/yr)	0.26	0.26	0.12	0.12				
GHG _{el,high} (tonnes/yr)	4.02	4.04	1.87	1.88				
GHG _{th} (tonnes/yr)	8.91	8.94	12.89	12.89				
GHG _{tot,avg} (tonnes/yr)	9.16	9.19	13.01	13.01				
GHG _{tot,high} (tonnes/yr)	12.92	12.98	14.77	14.77				

 Table H.23: Test Case House 1, Vancouver – ICE Based Cogeneration Annual

Simulation Results

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L				
Demand _{el} (kWh/yr)	19093	19198	19197	19206				
Demand _{el,grid} (kWh/yr)	11234	11331	6043	6045				
ICE _{Output,el} (kWh/yr)	7858	7867	13153	13160				
ICE _{Output,th} (GJ/yr)	74.8	74.9	131.5	131.4				
BB _{Output} (GJ/yr)	22.6	23.3	2.5	2.7				
Heat Dump (GJ/yr)	38.5	39.7	75.4	75.6				
Demand _{SH} (GJ/yr)	45.4	45.0	44.8	44.6				
Demand _{DHW} (GJ/yr)	14.8	14.8	15.2	15.2				
η_{el} (%)	23.0	23.0	20.7	20.7				
$\eta_{\mathrm{CHP}}(\%)$	60.6	60.8	44.3	44.3				
Cost _{el,flat} (CAD/yr)	711	717	383	383				
Cost _{el,TOU} (CAD/yr)	772	778	425	425				
Total Fuel (m ³ /yr)	4305	4331	6542	6547				
Cost _{fuel} (CAD/yr)	1755	1766	2667	2669				
Cost _{tot,flat} (CAD/yr)	2466	2483	3050	3052				
Cost _{tot,TOU} (CAD/yr)	2527	2544	3092	3094				
GHG _{el,avg} (tonnes/yr)	0.27	0.27	0.15	0.15				
GHG _{el,high} (tonnes/yr)	4.21	4.25	2.27	2.27				
GHG _{th} (tonnes/yr)	7.99	8.04	12.14	12.16				
GHG _{tot,avg} (tonnes/yr)	8.26	8.31	12.29	12.30				
GHG _{tot,high} (tonnes/yr)	12.20	12.29	14.41	14.42				

Table H.24: Test Case House 2, Prince George – ICE Based Cogeneration Annual **Simulation Results**

Simulation Results								
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L				
Demand _{el} (kWh/yr)	19093	19190	18990	19047				
Demand _{el,grid} (kWh/yr)	10807	10903	5397	5432				
ICE _{Output,el} (kWh/yr)	8285	8287	13593	13615				
ICE _{Output,th} (GJ/yr)	77.6	77.6	130.4	130.5				
BB _{Output} (GJ/yr)	1.7	1.3	0.0	0.0				
Heat Dump (GJ/yr)	46.5	46.2	96.7	97.1				
Demand _{SH} (GJ/yr)	18.7	18.6	18.4	18.2				
Demand _{DHW} (GJ/yr)	15.5	15.5	16.6	16.6				
η _{el} (%)	22.9	22.9	20.3	20.4				
η _{CHP} (%)	59.1	59.1	41.8	41.9				
Cost _{el,flat} (CAD/yr)	684	690	342	344				
Cost _{el,TOU} (CAD/yr)	744	750	380	383				
Total Fuel (m ³ /yr)	3832	3821	6772	6778				
Cost _{fuel} (CAD/yr)	1562	1558	2761	2764				
Cost _{tot,flat} (CAD/yr)	2246	2248	3103	3107				
Cost _{tot,TOU} (CAD/yr)	2306	2308	3141	3146				
GHG _{el,avg} (tonnes/yr)	0.26	0.26	0.13	0.13				
GHG _{el,high} (tonnes/yr)	4.05	4.09	2.02	2.04				
GHG _{th} (tonnes/yr)	7.11	7.09	12.57	12.58				
GHG _{tot,avg} (tonnes/yr)	7.37	7.35	12.70	12.71				
GHG _{tot,high} (tonnes/yr)	11.17	11.18	14.60	14.62				

 Table H.25: Test Case House 2, Vancouver – ICE Based Cogeneration Annual

Simulation Results								
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L				
Demand _{el} (kWh/yr)	16942	16928	16993	17027				
Demand _{el,grid} (kWh/yr)	9037	9024	3948	3970				
ICE _{Output,el} (kWh/yr)	7906	7904	13045	13057				
ICE _{Output,th} (GJ/yr)	75.6	75.6	132.4	132.6				
BB _{Output} (GJ/yr)	57.1	60.3	28.0	29.2				
Heat Dump (GJ/yr)	44.5	47.7	72.4	74.2				
Demand _{SH} (GJ/yr)	77.1	77.0	76.8	76.3				
Demand _{DHW} (GJ/yr)	12.4	12.5	12.6	12.5				
η _{el} (%)	23.1	23.1	20.7	20.7				
η _{CHP} (%)	59.1	59.1	41.6	41.7				
Cost _{el,flat} (CAD/yr)	572	571	250	251				
Cost _{el,TOU} (CAD/yr)	5446	5550	7344	7386				
Total Fuel (m ³ /yr)	622	622	282	284				
Cost _{fuel} (CAD/yr)	2220	2263	2994	3011				
Cost _{tot,flat} (CAD/yr)	2792	2834	3244	3263				
Cost _{tot,TOU} (CAD/yr)	2843	2884	3276	3295				
GHG _{el,avg} (tonnes/yr)	0.22	0.22	0.09	0.10				
GHG _{el,high} (tonnes/yr)	3.39	3.38	1.48	1.49				
GHG _{th} (tonnes/yr)	10.11	10.30	13.63	13.71				
GHG _{tot,avg} (tonnes/yr)	10.33	10.52	13.73	13.81				
GHG _{tot,high} (tonnes/yr)	13.50	13.69	15.11	15.20				

 Table H.26: Test Case House 3, Prince George – ICE Based Cogeneration Annual

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	17071	17069	16911	16975
Demand _{el,grid} (kWh/yr)	8714	8710	3444	3495
ICE _{Output,el} (kWh/yr)	8357	8359	13467	13480
ICE _{Output,th} (GJ/yr)	79.4	79.5	131.0	130.9
BB _{Output} (GJ/yr)	10.7	11.2	0.0	0.0
Heat Dump (GJ/yr)	46.7	47.2	86.6	86.7
Demand _{SH} (GJ/yr)	32.0	31.9	31.9	31.7
Demand _{DHW} (GJ/yr)	12.8	12.8	13.8	13.8
η_{el} (%)	23.0	23.0	20.3	20.3
η _{CHP} (%)	57.6	57.5	39.4	39.4
Cost _{el,flat} (CAD/yr)	552	551	218	221
Cost _{el,TOU} (CAD/yr)	601	601	247	251
Total Fuel (m ³ /yr)	4147	4161	6736	6739
Cost _{fuel} (CAD/yr)	1691	1697	2746	2748
Cost _{tot,flat} (CAD/yr)	2242	2248	2964	2969
Cost _{tot,TOU} (CAD/yr)	2291	2297	2993	2998
GHG _{el,avg} (tonnes/yr)	0.21	0.21	0.08	0.08
GHG _{el,high} (tonnes/yr)	3.27	3.27	1.29	1.31
GHG _{th} (tonnes/yr)	7.70	7.73	12.50	12.51
GHG _{tot,avg} (tonnes/yr)	7.91	7.93	12.59	12.60
GHG _{tot,high} (tonnes/yr)	10.97	10.99	13.80	13.82

 Table H.27: Test Case House 3, Vancouver – ICE Based Cogeneration Annual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	12191	12181	12206	12237
Demand _{el,grid} (kWh/yr)	5029	5021	1494	1510
ICE _{Output,el} (kWh/yr)	7161	7161	10712	10728
ICE _{Output,th} (GJ/yr)	69.7	69.7	116.5	116.6
BB _{Output} (GJ/yr)	46.2	47.5	21.9	23.7
Heat Dump (GJ/yr)	44.4	45.8	67.4	70.0
Demand _{SH} (GJ/yr)	60.2	60.1	59.6	59.0
Demand _{DHW} (GJ/yr)	12.6	12.6	12.7	12.7
η _{el} (%)	22.4	22.4	19.0	19.0
η _{CHP} (%)	53.4	53.3	36.5	36.5
Cost _{el,flat} (CAD/yr)	388	387	115	116
Cost _{el,TOU} (CAD/yr)	422	421	130	131
Total Fuel (m ³ /yr)	4821	4863	6381	6447
Cost _{fuel} (CAD/yr)	1865	1881	2468	2494
Cost _{tot,flat} (CAD/yr)	2253	2268	2584	2610
Cost _{tot,TOU} (CAD/yr)	2287	2302	2598	2625
GHG _{el,avg} (tonnes/yr)	4.33	4.32	1.29	1.30
GHG _{el,high} (tonnes/yr)	4.95	4.95	1.47	1.49
GHG _{th} (tonnes/yr)	8.95	9.03	11.85	11.97
GHG _{tot,avg} (tonnes/yr)	13.28	13.35	13.13	13.27
GHG _{tot,high} (tonnes/yr)	13.90	13.97	13.32	13.45

 Table H.28: Test Case House 4, Calgary – ICE Based Cogeneration Annual

Simulaton Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	12219	12211	12224	12241
Demand _{el,grid} (kWh/yr)	4808	4802	1324	1340
ICE _{Output,el} (kWh/yr)	7411	7410	10900	10901
ICE _{Output,th} (GJ/yr)	72.4	72.5	120.4	120.3
BB _{Output} (GJ/yr)	49.0	48.7	23.7	27.3
Heat Dump (GJ/yr)	42.4	42.4	65.4	68.9
Demand _{SH} (GJ/yr)	67.8	67.6	67.4	67.3
Demand _{DHW} (GJ/yr)	12.5	12.5	12.6	12.6
$\eta_{\rm el}$ (%)	22.3	22.3	18.7	18.7
η _{CHP} (%)	51.9	51.9	35.9	35.9
Cost _{el,flat} (CAD/yr)	371	370	102	103
Cost _{el,TOU} (CAD/yr)	399	399	113	115
Total Fuel (m ³ /yr)	5045	5036	6624	6740
Cost _{fuel} (CAD/yr)	1951	1948	2562	2607
Cost _{tot,flat} (CAD/yr)	2322	2318	2664	2710
Cost _{tot,TOU} (CAD/yr)	2351	2347	2675	2722
GHG _{el,avg} (tonnes/yr)	4.14	4.13	1.14	1.15
GHG _{el,high} (tonnes/yr)	4.74	4.73	1.30	1.32
GHG _{th} (tonnes/yr)	9.37	9.35	12.30	12.51
GHG _{tot,avg} (tonnes/yr)	13.51	13.48	13.44	13.67
GHG _{tot,high} (tonnes/yr)	14.10	14.08	13.60	13.83

 Table H.29: Test Case House 4, Edmonton – ICE Based Cogeneration Annual

Simulation Results

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	12343	12338	12338	12346
Demand _{el,grid} (kWh/yr)	5356	5352	1820	1831
ICE _{Output,el} (kWh/yr)	6987	6986	10519	10515
ICE _{Output,th} (GJ/yr)	68.6	68.7	115.5	115.4
BB _{Output} (GJ/yr)	49.3	49.2	26.3	29.8
Heat Dump (GJ/yr)	39.8	40.1	63.9	67.5
Demand _{SH} (GJ/yr)	64.5	64.2	64.1	64.0
Demand _{DHW} (GJ/yr)	14.9	14.9	15.0	15.1
η_{el} (%)	22.1	22.1	18.7	18.7
η _{CHP} (%)	54.0	54.0	36.7	36.7
Cost _{el,flat} (CAD/yr)	413	413	140	141
Cost _{el,TOU} (CAD/yr)	448	448	155	156
Total Fuel (m ³ /yr)	4877	4874	6476	6590
Cost _{fuel} (CAD/yr)	1887	1885	2505	2549
Cost _{tot,flat} (CAD/yr)	2299	2298	2645	2690
Cost _{tot,TOU} (CAD/yr)	2335	2333	2660	2705
GHG _{el,avg} (tonnes/yr)	4.61	4.61	1.57	1.58
GHG _{el,high} (tonnes/yr)	5.28	5.27	1.79	1.80
GHG _{th} (tonnes/yr)	9.05	9.05	12.02	12.23
GHG _{tot,avg} (tonnes/yr)	13.67	13.66	13.59	13.81
GHG _{tot,high} (tonnes/yr)	14.33	14.32	13.81	14.04

 Table H.30: Test Case House 5, Calgary – ICE Based Cogeneration Annual

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	12380	12379	12377	12379
Demand _{el,grid} (kWh/yr)	5155	5153	1646	1651
ICE _{Output,el} (kWh/yr)	7225	7225	10731	10729
ICE _{Output,th} (GJ/yr)	71.2	71.4	119.4	119.3
BB _{Output} (GJ/yr)	52.8	55.0	30.3	33.2
Heat Dump (GJ/yr)	38.4	41.4	64.9	67.9
Demand _{SH} (GJ/yr)	72.0	71.4	71.2	70.9
Demand _{DHW} (GJ/yr)	14.9	14.9	15.0	15.0
η_{el} (%)	22.0	22.0	18.4	18.4
η _{CHP} (%)	52.5	52.5	36.1	36.0
Cost _{el,flat} (CAD/yr)	397	397	127	127
Cost _{el,TOU} (CAD/yr)	429	429	139	139
Total Fuel (m ³ /yr)	5121	5192	6793	6887
Cost _{fuel} (CAD/yr)	1981	2008	2627	2664
Cost _{tot,flat} (CAD/yr)	2378	2406	2754	2791
Cost _{tot,TOU} (CAD/yr)	2410	2437	2766	2803
GHG _{el,avg} (tonnes/yr)	4.44	4.44	1.42	1.42
GHG _{el,high} (tonnes/yr)	5.08	5.07	1.62	1.63
GHG _{th} (tonnes/yr)	9.51	9.64	12.61	12.79
GHG _{tot,avg} (tonnes/yr)	13.94	14.07	14.03	14.21
GHG _{tot,high} (tonnes/yr)	14.58	14.71	14.23	14.41

 Table H.31: Test Case House 5, Edmonton – ICE Based Cogeneration Annual

Simulation Results

Simulation results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	11295	11283	11326	11364	
Demandel,grid (kWh/yr)	4320	4309	1211	1223	
ICE _{Output,el} (kWh/yr)	6976	6974	10115	10141	
ICE _{Output,th} (GJ/yr)	69.2	69.1	114.4	114.6	
BB _{Output} (GJ/yr)	46.6	50.8	21.6	23.7	
Heat Dump (GJ/yr)	35.9	40.2	56.5	59.3	
Demand _{SH} (GJ/yr)	68.9	68.6	68.3	67.8	
Demand _{DHW} (GJ/yr)	12.4	12.4	12.5	12.5	
η_{el} (%)	22.1	22.1	18.3	18.36421	
η _{CHP} (%)	51.0	51.0	35.6	35.7	
Cost _{el,flat} (CAD/yr)	333	332	93	94	
Cost _{el,TOU} (CAD/yr)	367	366	106	108	
Total Fuel (m ³ /yr)	4786	4923	6215	6622	
Cost _{fuel} (CAD/yr)	1851	1904	2404	2561	
Cost _{tot,flat} (CAD/yr)	2184	2236	2497	2656	
Cost _{tot,TOU} (CAD/yr)	2218	2270	2510	2669	
GHG _{el,avg} (tonnes/yr)	3.72	3.71	1.04	1.05	
GHG _{el,high} (tonnes/yr)	4.25	4.24	1.19	1.20	
GHG _{th} (tonnes/yr)	8.89	9.14	11.54	12.29	
GHG _{tot,avg} (tonnes/yr)	12.60	12.85	12.58	13.35	
GHG _{tot,high} (tonnes/yr)	13.14	13.38	12.73	13.50	

 Table H.32: Test Case House 6, Calgary – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	11298	11289	11299	11302	
Demand _{el,grid} (kWh/yr)	4106	4098	1052	1062	
ICE _{Output,el} (kWh/yr)	7192	7191	10247	10240	
ICE _{Output,th} (GJ/yr)	71.2	71.3	117.3	117.1	
BB _{Output} (GJ/yr)	57.0	57.0	31.5	35.0	
Heat Dump (GJ/yr)	41.6	42.3	62.8	66.1	
Demand _{SH} (GJ/yr)	75.5	74.8	74.8	74.7	
Demand _{DHW} (GJ/yr)	21.9	21.9	18.0	18.0	
η_{el} (%)	49.6	49.6	34.9	34.9	
η _{CHP} (%)	49.6	49.6	34.9	34.9	
Cost _{el,flat} (CAD/yr)	316	316	81	82	
Cost _{el,TQU} (CAD/yr)	345	344	91	92	
Total Fuel (m ³ /yr)	5248	5247	6703	6815	
Cost _{fuel} (CAD/yr)	2030	2029	2593	2636	
Cost _{tot,flat} (CAD/yr)	2346	2345	2674	2718	
Cost _{tot,TOU} (CAD/yr)	2375	2374	2683	2727	
GHG _{el,avg} (tonnes/yr)	3.53	3.53	0.91	0.91	
GHG _{el,high} (tonnes/yr)	4.04	4.04	1.04	1.05	
GHG _{th} (tonnes/yr)	9.74	9.74	12.44	12.65	
GHG _{tot,avg} (tonnes/yr)	13.28	13.27	13.35	13.57	
GHG _{tot,high} (tonnes/yr)	13.79	13.78	13.48	13.70	

 Table H.33: Test Case House 6, Edmonton – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	10281	10281	10275	10271
Demand _{el,grid} (kWh/yr)	3136	3132	594	599
ICE _{Output,el} (kWh/yr)	7145	7148	9681	9673
ICE _{Output,th} (GJ/yr)	71.1	71.4	115.5	115.4
BB _{Output} (GJ/yr)	64.4	66.2	42.9	45.0
Heat Dump (GJ/yr)	45.4	48.6	69.9	72.0
Demand _{SH} (GJ/yr)	78.8	77.8	77.2	77.1
Demand _{DHW} (GJ/yr)	12.6	12.5	12.7	12.7
η_{el} (%)	21.5	21.5	17.1	17.1
$\eta_{\mathrm{CHP}}(\%)$	45.8	45.9	33.3	33.3
Cost _{el,flat} (CAD/yr)	282	282	53	54
Cost _{el,TOU} (CAD/yr)	314	313	62	62
Total Fuel (m ³ /yr)	5518	5579	7006	7072
Cost _{fuel} (CAD/yr)	1872	1893	2377	2400
Cost _{tot,flat} (CAD/yr)	2154	2174	2431	2453
Cost _{tot,TOU} (CAD/yr)	2186	2206	2439	2462
GHG _{el,avg} (tonnes/yr)	2.63	2.63	0.50	0.50
GHG _{el,high} (tonnes/yr)	3.57	3.57	0.68	0.68
GHG _{th} (tonnes/yr)	10.24	10.36	13.01	13.13
GHG _{tot,avg} (tonnes/yr)	12.88	12.99	13.51	13.63
GHG _{tot,high} (tonnes/yr)	13.82	13.92	13.68	13.81

 Table H.34: Test Case House 7, North Battleford – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10231	10231	10231	10226	
Demand _{el,grid} (kWh/yr)	3133	3131	604	607	
ICE _{Output,el} (kWh/yr)	7098	7099	9626	9619	
ICE _{Output,th} (GJ/yr)	70.6	70.8	114.6	114.5	
BB _{Output} (GJ/yr)	57.5	60.0	40.2	42.1	
Heat Dump (GJ/yr)	46.7	50.2	74.2	76.0	
Demand _{SH} (GJ/yr)	70.0	69.3	69.1	69.1	
Demand _{DHW} (GJ/yr)	12.7	12.6	12.7	12.7	
η _{el} (%)	21.5	21.5	17.1	17.1	
η _{CHP} (%)	45.9	45.9	33.3	33.3	
Cost _{el,flat} (CAD/yr)	282	282	54	55	
Cost _{el,TOU} (CAD/yr)	313	313	63	63	
Total Fuel (m ³ /yr)	5270	5352	6881	6942	
Cost _{fuel} (CAD/yr)	1788	1816	2335	2355	
Cost _{tot,flat} (CAD/yr)	2070	2097	2389	2410	
Cost _{tot,TOU} (CAD/yr)	2101	2129	2397	2418	
GHG _{el,avg} (tonnes/yr)	2.63	2.63	0.51	0.51	
GHG _{el,high} (tonnes/yr)	3.57	3.57	0.69	0.69	
GHG _{th} (tonnes/yr)	9.78	9.94	12.77	12.89	
GHG _{tot,avg} (tonnes/yr)	12.42	12.57	13.28	13.40	
GHG _{tot,high} (tonnes/yr)	13.35	13.50	13.46	13.58	

Table H.35: Test Case House 7, Regina – ICE Based Cogeneration Annual

Simulation Results

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	11333	11333	11325	11323
Demand _{el,grid} (kWh/yr)	4084	4083	959	965
ICE _{Output,el} (kWh/yr)	7249	7250	10366	10359
ICE _{Output,th} (GJ/yr)	72.0	72.2	119.2	119.1
BB _{Output} (GJ/yr)	60.8	62.3	39.2	40.8
Heat Dump (GJ/yr)	45.0	47.4	71.4	73.0
Demand _{SH} (GJ/yr)	76.6	75.9	75.6	75.6
Demand _{DHW} (GJ/yr)	12.5	12.5	12.7	12.7
η_{el} (%)	21.7	21.7	17.7	17.7
η _{CHP} (%)	48.7	48.8	34.4	34.4
Cost _{el,flat} (CAD/yr)	367	367	86	87
Cost _{el,TOU} (CAD/yr)	404	404	97	98
Total Fuel (m ³ /yr)	5430	5479	7061	7113
Cost _{fuel} (CAD/yr)	1842	1859	2396	2413
Cost _{tot,flat} (CAD/yr)	2209	2226	2482	2500
Cost _{tot,TOU} (CAD/yr)	2246	2263	2493	2511
GHG _{el,avg} (tonnes/yr)	3.43	3.43	0.80	0.81
GHG _{el,high} (tonnes/yr)	4.65	4.65	1.09	1.10
GHG _{th} (tonnes/yr)	10.08	10.17	13.11	13.20
GHG _{tot,avg} (tonnes/yr)	13.51	13.60	13.91	14.01
GHG _{tot,high} (tonnes/yr)	14.73	14.82	14.20	14.30

Table H.36: Test Case House 8, North Battleford – ICE Based Cogeneration Annual **Simulation Results**

Simulation results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	11290	11292	11286	11280	
Demand _{el,grid} (kWh/yr)	4088	4089	978	978	
ICE _{Output,el} (kWh/yr)	7202	7204	10308	10302	
ICE _{Output,th} (GJ/yr)	71.3	71.5	118.2	118.1	
BB _{Output} (GJ/yr)	55.7	57.5	37.6	38.8	
Heat Dump (GJ/yr)	46.4	49.1	75.9	77.2	
Demand _{SH} (GJ/yr)	69.2	68.6	68.4	68.2	
Demand _{DHW} (GJ/yr)	12.7	12.6	12.7	12.8	
η_{el} (%)	21.7	21.7	17.7	17.7	
η _{CHP} (%)	48.8	48.9	34.5	34.5	
Cost _{el,flat} (CAD/yr)	367	368	88	88	
Cost _{el,TOU} (CAD/yr)	404	404	99	99	
Total Fuel (m ³ /yr)	5239	5299	6974	7011	
Cost _{fuel} (CAD/yr)	1778	1798	2366	2379	
Cost _{tot,flat} (CAD/yr)	2145	2165	2454	2467	
Cost _{tot,TOU} (CAD/yr)	2182	2202	2465	2478	
GHG _{el,avg} (tonnes/yr)	3.43	3.43	0.82	0.82	
GHG _{el,high} (tonnes/yr)	4.66	4.66	1.11	1.11	
GHG _{th} (tonnes/yr)	9.73	9.84	12.95	13.02	
GHG _{tot,avg} (tonnes/yr)	13.16	13.27	13.77	13.84	
GHG _{tot,high} (tonnes/yr)	14.38	14.49	14.06	14.13	

 Table H.37: Test Case House 8, Regina – ICE Based Cogeneration Annual

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	9789	9786	9775	9768
Demand _{el,grid} (kWh/yr)	2873	2870	504	502
ICE _{Output,el} (kWh/yr)	6916	6916	9272	9265
ICE _{Output,th} (GJ/yr)	69.8	70.1	113.2	113.2
BB _{Output} (GJ/yr)	78.1	79.9	55.0	56.9
Heat Dump (GJ/yr)	45.4	48.0	66.6	68.7
Demand _{SH} (GJ/yr)	93.6	93.0	92.6	92.4
Demand _{DHW} (GJ/yr)	10.3	10.3	10.3	10.3
η _{el} (%)	21.1	21.1	16.6	16.6
η _{CHP} (%)	44.7	44.8	32.7	32.7
Cost _{el,flat} (CAD/yr)	258	258	45	45
Cost _{el,TOU} (CAD/yr)	291	290	52	52
Total Fuel (m ³ /yr)	5908	5964	7288	7348
Cost _{fuel} (CAD/yr)	2004	2024	2473	2493
Cost _{tot,flat} (CAD/yr)	2263	2282	2518	2538
Cost _{tot,TOU} (CAD/yr)	2295	2314	2525	2546
GHG _{el,avg} (tonnes/yr)	2.41	2.41	0.42	0.42
GHG _{el,high} (tonnes/yr)	3.27	3.27	0.57	0.57
GHG _{th} (tonnes/yr)	10.97	11.07	13.53	13.64
GHG _{tot,avg} (tonnes/yr)	13.38	13.48	13.95	14.06
GHG _{tot,high} (tonnes/yr)	14.24	14.34	14.10	14.21

 Table H.38: Test Case House 9, North Battleford – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9711	9713	9704	9698	
Demand _{el,grid} (kWh/yr)	2854	2855	508	508	
ICE _{Output,el} (kWh/yr)	6857	6858	9196	9190	
ICE _{Output,th} (GJ/yr)	69.2	69.4	112.1	112.1	
BB _{Output} (GJ/yr)	68.9	71.1	50.5	51.7	
Heat Dump (GJ/yr)	46.2	49.2	71.9	73.3	
Demand _{SH} (GJ/yr)	82.8	82.2	81.6	81.3	
Demand _{DHW} (GJ/yr)	10.4	10.3	10.4	10.4	
η_{el} (%)	21.1	21.1	16.6	16.6	
η _{CHP} (%)	44.6	44.7	32.6	32.6	
Cost _{el,flat} (CAD/yr)	257	257	46	46	
Cost _{el,TOU} (CAD/yr)	288	288	53	53	
Total Fuel (m ³ /yr)	5581	5652	7103	7139	
Cost _{fuel} (CAD/yr)	1894	1918	2410	2422	
Cost _{tot,flat} (CAD/yr)	2150	2174	2456	2468	
Cost _{tot,TOU} (CAD/yr)	2182	2206	2463	2475	
GHG _{el,avg} (tonnes/yr)	2.40	2.40	0.43	0.43	
GHG _{el,high} (tonnes/yr)	3.25	3.25	0.58	0.58	
GHG _{th} (tonnes/yr)	10.36	10.49	13.19	13.25	
GHG _{tot,avg} (tonnes/yr)	12.76	12.89	13.61	13.68	
GHG _{tot,high} (tonnes/yr)	13.61	13.74	13.76	13.83	

 Table H.39: Test Case House 9, Regina – ICE Based Cogeneration Annual

 Simulation Results

Table H.40: Test	Case House	10. Le Pas -	- ICE Based	Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	11493	11488	11506	11514
Demand _{el,grid} (kWh/yr)	4054	4050	992	1006
ICE _{Output,el} (kWh/yr)	7439	7438	10514	10508
ICE _{Output,th} (GJ/yr)	73.6	73.7	121.2	121.0
BB _{Output} (GJ/yr)	66.0	66.1	36.9	42.0
Heat Dump (GJ/yr)	40.9	41.2	59.5	64.6
Demand _{SH} (GJ/yr)	87.6	87.5	87.4	87.2
Demand _{DHW} (GJ/yr)	12.4	12.4	12.5	12.5
η_{el} (%)	21.9	21.9	17.9	17.8
η _{CHP} (%)	48.8	48.8	34.6	34.6
Cost _{el,flat} (CAD/yr)	231	230	56	57
Cost _{el,TOU} (CAD/yr)	256	256	65	66
Total Fuel (m ³ /yr)	5667	5668	7066	7232
Cost _{fuel} (CAD/yr)	2907	2908	3625	3710
Cost _{tot,flat} (CAD/yr)	3138	3138	3681	3767
Cost _{tot,TOU} (CAD/yr)	3163	3164	3690	3776
GHG _{el,avg} (tonnes/yr)	0.13	0.13	0.03	0.03
GHG _{el,high} (tonnes/yr)	4.84	4.83	1.18	1.20
GHG _{th} (tonnes/yr)	10.52	10.52	13.12	13.43
GHG _{tot,avg} (tonnes/yr)	10.65	10.65	13.15	13.46
GHG _{tot,high} (tonnes/yr)	15.36	15.35	14.30	14.63

Simulation Results

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	11683	11658	11684	11700	
Demand _{el,grid} (kWh/yr)	4108	4083	976	989	
ICE _{Output,el} (kWh/yr)	7575	7575	10708	10712	
ICE _{Output,th} (GJ/yr)	74.5	74.6	122.6	122.5	
BB _{Output} (GJ/yr)	54.9	56.3	33.8	37.5	
Heat Dump (GJ/yr)	47.9	49.6	75.2	79.1	
Demand _{SH} (GJ/yr)	70.1	69.9	69.7	69.5	
Demand _{DHW} (GJ/yr)	12.7	12.7	12.8	12.8	
η _{el} (%)	21.8	21.8	17.8	17.8	
η _{CHP} (%)	48.5	48.5	34.4	34.4	
Cost _{el,flat} (CAD/yr)	234	232	56	56	
Cost _{el,TOU} (CAD/yr)	259	258	64	65	
Total Fuel (m ³ /yr)	5370	5415	7074	7198	
Cost _{fuel} (CAD/yr)	2755	2778	3629	3693	
Cost _{tot,flat} (CAD/yr)	2989	3010	3684	3749	
Cost _{tot,TOU} (CAD/yr)	3014	3036	3693	3757	
GHG _{el,avg} (tonnes/yr)	0.13	0.13	0.03	0.03	
GHG _{el,high} (tonnes/yr)	4.90	4.87	1.16	1.18	
GHG _{th} (tonnes/yr)	9.97	10.05	13.13	13.36	
GHG _{tot,avg} (tonnes/yr)	10.10	10.18	13.16	13.39	
GHG _{tot,high} (tonnes/yr)	14.87	14.92	14.30	14.54	

Table H.41: Test Case House 10, Winnipeg – ICE Based Cogeneration Annual

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10212	10207	10205	10199	
Demand _{el,grid} (kWh/yr)	2993	2985	519	523	
ICE _{Output,el} (kWh/yr)	7220	7222	9687	9676	
ICE _{Output,th} (GJ/yr)	72.2	72.5	117.0	116.9	
BB _{Output} (GJ/yr)	93.8	96.6	66.3	69.2	
Heat Dump (GJ/yr)	42.9	47.7	62.3	65.3	
Demand _{SH} (GJ/yr)	112.0	110.2	109.8	109.6	
Demand _{DHW} (GJ/yr)	12.5	12.4	12.5	12.5	
η_{el} (%)	21.5	21.5	17.0	17.0	
η _{CHP} (%)	45.4	45.5	33.2	33.2	
Cost _{el,flat} (CAD/yr)	170	170	30	30	
Cost _{el,TOU} (CAD/yr)	190	189	34	34	
Total Fuel (m ³ /yr)	6516	6607	7805	7897	
Cost _{fuel} (CAD/yr)	3343	3390	4004	4051	
Cost _{tot,flat} (CAD/yr)	3513	3559	4033	4081	
Cost _{tot,TOU} (CAD/yr)	3533	3579	4038	4086	
GHG _{el,avg} (tonnes/yr)	0.09	0.09	0.02	0.02	
GHG _{el,high} (tonnes/yr)	3.57	3.56	0.62	0.62	
GHG _{th} (tonnes/yr)	12.10	12.27	14.49	14.66	
GHG _{tot,avg} (tonnes/yr)	12.19	12.36	14.51	14.68	
GHG _{tot,high} (tonnes/yr)	15.67	15.83	15.11	15.28	

 Table H.42: Test Case House 11, Le Pas – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10110	10107	10108	10106	
Demand _{el,grid} (kWh/yr)	2845	2842	467	472	
ICE _{Output,el} (kWh/yr)	7265	7265	9642	9634	
ICE _{Output,th} (GJ/yr)	72.8	73.0	117.5	117.5	
BB _{Output} (GJ/yr)	76.8	80.0	57.5	60.0	
Heat Dump (GJ/yr)	45.2	49.2	71.3	74.3	
Demand _{SH} (GJ/yr)	93.1	92.4	92.2	91.8	
Demand _{DHW} (GJ/yr)	12.7	12.6	12.7	12.7	
η_{el} (%)	21.4	21.4	16.8	16.8	
η _{CHP} (%)	44.7	44.7	32.8	32.8	
Cost _{el,flat} (CAD/yr)	162	162	27	27	
Cost _{el,TOU} (CAD/yr)	181	180	31	31	
Total Fuel (m ³ /yr)	6005	6107	7566	7648	
Cost _{fuel} (CAD/yr)	3081	3133	3881	3923	
Cost _{tot,flat} (CAD/yr)	3242	3295	3908	3950	
Cost _{tot,TOU} (CAD/yr)	3261	3314	3912	3954	
GHG _{el,avg} (tonnes/yr)	0.09	0.09	0.01	0.01	
GHG _{el,high} (tonnes/yr)	3.39	3.39	0.56	0.56	
GHG _{th} (tonnes/yr)	11.15	11.34	14.04	14.20	
GHG _{tot,avg} (tonnes/yr)	11.24	11.43	14.06	14.21	
GHG _{tot,high} (tonnes/yr)	14.54	14.73	14.60	14.76	

 Table H.43: Test Case House 11, Winnipeg – ICE Based Cogeneration Annual

Table H.44: Test Case House 12, Le Pas –	ICE Based Cogeneration Annual
--	-------------------------------

·	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	9472	9455	9411	9400
Demand _{el,grid} (kWh/yr)	2533	2522	353	350
ICE _{Output,el} (kWh/yr)	6939	6934	9059	9050
ICE _{Output,th} (GJ/yr)	70.5	70.7	113.1	113.2
BB _{Output} (GJ/yr)	118.7	119.4	89.2	91.3
Heat Dump (GJ/yr)	49.8	51.5	63.8	66.3
Demand _{SH} (GJ/yr)	130.6	129.9	129.6	129.4
Demand _{DHW} (GJ/yr)	10.1	10.1	10.2	10.2
η_{el} (%)	21.0	21.0	16.3	16.3
η _{CHP} (%)	43.6	43.6	32.2	32.2
Cost _{el,flat} (CAD/yr)	144	143	20	20
Cost _{el,TOU} (CAD/yr)	162	162	23	23
Total Fuel (m ³ /yr)	7259	7281	8382	8451
Cost _{fuel} (CAD/yr)	3724	3735	4300	4335
Cost _{tot,flat} (CAD/yr)	3868	3879	4320	4355
Cost _{tot,TOU} (CAD/yr)	3886	3897	4323	4358
GHG _{el,avg} (tonnes/yr)	0.08	0.08	0.01	0.01
GHG _{el,high} (tonnes/yr)	3.02	3.01	0.42	0.42
GHG _{th} (tonnes/yr)	13.48	13.52	15.56	15.69
GHG _{tot,avg} (tonnes/yr)	13.55	13.59	15.57	15.70
GHG _{tot,high} (tonnes/yr)	16.50	16.52	15.98	16.11

Simulation Acourts					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9261	9258	9247	9239	
Demand _{el,grid} (kWh/yr)	2346	2344	304	305	
ICE _{Output,el} (kWh/yr)	6914	6914	8943	8934	
ICE _{Output,th} (GJ/yr)	70.6	70.9	113.3	113.3	
BB _{Output} (GJ/yr)	97.5	99.3	74.9	76.8	
Heat Dump (GJ/yr)	50.9	53.6	72.4	74.6	
Demand _{SH} (GJ/yr)	108.3	107.6	106.7	106.4	
Demand _{DHW} (GJ/yr)	10.3	10.3	10.4	10.4	
η_{el} (%)	20.8	20.8	16.0	16.0	
η _{CHP} (%)	42.6	42.7	31.8	31.8	
Cost _{el,flat} (CAD/yr)	134	133	17	17	
Cost _{el,TOU} (CAD/yr)	151	151	20	20	
Total Fuel (m ³ /yr)	6591	6648	7942	8003	
Cost _{fuel} (CAD/yr)	3381	3410	4074	4105	
Cost _{tot,flat} (CAD/yr)	3515	3544	4091	4123	
Cost _{tot,TOU} (CAD/yr)	3532	3561	4094	4126	
GHG _{el,avg} (tonnes/yr)	0.07	0.07	0.01	0.01	
GHG _{el,high} (tonnes/yr)	2.80	2.80	0.36	0.36	
GHG _{th} (tonnes/yr)	12.24	12.34	14.74	14.86	
GHG _{tot,avg} (tonnes/yr)	12.31	12.41	14.75	14.87	
GHG _{tot,high} (tonnes/yr)	15.03	15.14	15.11	15.22	

 Table H.45: Test Case House 12, Winnipeg – ICE Based Cogeneration Annual

Simulation results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	11516	11513	11418	11433	
Demand _{el,grid} (kWh/yr)	4215	4211	1089	1101	
ICE _{Output,el} (kWh/yr)	7301	7303	10328	10333	
ICE _{Output,th} (GJ/yr)	72.8	72.8	117.8	117.8	
BB _{Output} (GJ/yr)	12.6	12.5	0.0	0.0	
Heat Dump (GJ/yr)	38.2	38.4	70.5	70.7	
Demand _{SH} (GJ/yr)	35.6	35.3	35.2	35.1	
Demand _{DHW} (GJ/yr)	12.9	12.9	13.4	13.4	
η_{el} (%)	21.2	21.2	17.2	17.18664	
η _{CHP} (%)	48.0	48.0	33.6	33.7	
Cost _{el,flat} (CAD/yr)	422	421	109	110	
Cost _{el,TOU} (CAD/yr)	468	467	125	126	
Total Fuel (m ³ /yr)	3931	3929	5887	5888	
Cost _{fuel} (CAD/yr)	1937	1936	2901	2901	
Cost _{tot,flat} (CAD/yr)	2358	2357	3009	3011	
Cost _{tot,TOU} (CAD/yr)	2404	2403	3026	3028	
GHG _{el,avg} (tonnes/yr)	0.94	0.93	0.24	0.24	
GHG _{el,high} (tonnes/yr)	4.02	4.02	1.04	1.05	
GHG _{th} (tonnes/yr)	7.30	7.29	10.93	10.93	
GHG _{tot,avg} (tonnes/yr)	8.23	8.23	11.17	11.18	
GHG _{tot,high} (tonnes/yr)	11.32	11.31	11.97	11.98	

 Table H.46: Test Case House 13, Ottawa – ICE Based Cogeneration Annual

Simulation results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	11524	11524	11374	11404
Demand _{el,grid} (kWh/yr)	4224	4225	1081	1102
ICE _{Output,el} (kWh/yr)	7300	7300	10293	10302
ICE _{Output,th} (GJ/yr)	72.7	72.6	116.3	116.3
BB _{Output} (GJ/yr)	8.0	7.1	0.0	0.0
Heat Dump (GJ/yr)	38.4	37.6	73.8	73.8
Demand _{SH} (GJ/yr)	30.7	30.4	30.3	30.1
Demand _{DHW} (GJ/yr)	12.9	12.9	13.6	13.6
η_{el} (%)	21.2	21.2	17.2	17.2
η _{CHP} (%)	48.2	48.2	33.5	33.6
Cost _{el,flat} (CAD/yr)	422	422	108	110
Cost _{el,TOU} (CAD/yr)	469	469	124	127
Total Fuel (m ³ /yr)	3775	3746	5869	5871
Cost _{fuel} (CAD/yr)	1860	1846	2892	2893
Cost _{tot,flat} (CAD/yr)	2282	2268	3000	3003
Cost _{tot,TOU} (CAD/yr)	2329	2315	3016	3020
GHG _{el,avg} (tonnes/yr)	0.94	0.94	0.24	0.24
GHG _{el,high} (tonnes/yr)	4.03	4.03	1.03	1.05
GHG _{th} (tonnes/yr)	7.01	6.96	10.90	10.90
GHG _{tot,avg} (tonnes/yr)	7.95	7.89	11.14	11.14
GHG _{tot,high} (tonnes/yr)	11.04	10.99	11.93	11.95

 Table H.47: Test Case House 13, Toronto – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	10548	10559	10541	10544
Demandel,grid (kWh/yr)	3248	3255	676	680
ICE _{Output,el} (kWh/yr)	7300	7305	9864	9865
ICE _{Output,th} (GJ/yr)	73.1	73.3	117.4	117.2
BB _{Output} (GJ/yr)	44.0	41.9	18.1	17.0
Heat Dump (GJ/yr)	26.5	24.7	45.3	43.8
Demand _{SH} (GJ/yr)	79.5	79.3	78.8	79.0
Demand _{DHW} (GJ/yr)	12.5	12.5	12.7	12.7
$\eta_{\rm el}$ (%)	21.3	21.3	16.9	16.9
η _{CHP} (%)	45.5	45.6	32.9	32.9
Cost _{el,flat} (CAD/yr)	325	325	68	68
Cost _{el,TOU} (CAD/yr)	363	364	79	80
Total Fuel (m ³ /yr)	4957	4889	6371	6335
Cost _{fuel} (CAD/yr)	2443	2409	3139	3121
Cost _{tot,flat} (CAD/yr)	2767	2735	3207	3189
Cost _{tot,TOU} (CAD/yr)	2806	2773	3219	3201
GHG _{el,avg} (tonnes/yr)	0.72	0.72	0.15	0.15
GHG _{el,high} (tonnes/yr)	3.10	3.10	0.65	0.65
GHG _{th} (tonnes/yr)	9.20	9.08	11.83	11.76
GHG _{tot,avg} (tonnes/yr)	9.92	9.80	11.98	11.91
GHG _{tot,high} (tonnes/yr)	12.30	12.18	12.47	12.41

 Table H.48: Test Case House 14, Ottawa – ICE Based Cogeneration Annual

 Simulation Results

المنادات المنادات

	Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10546	10554	10523	10525	
Demand _{el,grid} (kWh/yr)	3249	3255	675	678	
ICE _{Output,el} (kWh/yr)	7296	7299	9847	9847	
ICE _{Output,th} (GJ/yr)	73.2	73.3	116.9	116.7	
BB _{Output} (GJ/yr)	32.0	29.9	12.6	11.2	
Heat Dump (GJ/yr)	28.2	26.4	52.4	51.0	
Demand _{SH} (GJ/yr)	65.8	65.5	65.5	65.4	
Demand _{DHW} (GJ/yr)	12.5	12.5	12.8	12.8	
η _{el} (%)	21.3	21.3	16.9	16.9	
η _{CHP} (%)	45.6	45.6	32.8	32.8	
Cost _{el,flat} (CAD/yr)	325	326	68	68	
Cost _{el,TOU} (CAD/yr)	364	364	79	80	
Total Fuel (m ³ /yr)	4559	4491	6176	6131	
Cost _{fuel} (CAD/yr)	2246	2213	3043	3021	
Cost _{tot,flat} (CAD/yr)	2571	2538	3111	3089	
Cost _{tot,TOU} (CAD/yr)	2610	2577	3123	3101	
GHG _{el,avg} (tonnes/yr)	0.72	0.72	0.15	0.15	
GHG _{el,high} (tonnes/yr)	3.10	3.11	0.64	0.65	
GHG _{th} (tonnes/yr)	8.46	8.34	11.47	11.38	
GHG _{tot,avg} (tonnes/yr)	9.19	9.06	11.62	11.53	
GHG _{tot,high} (tonnes/yr)	11.56	11.44	12.11	12.03	

 Table H.49: Test Case House 14, Toronto – ICE Based Cogeneration Annual

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	9123	9160	9185	9201
Demandel,grid (kWh/yr)	2285	2311	361	360
ICE _{Output,el} (kWh/yr)	6838	6849	8825	8841
ICE _{Output,th} (GJ/yr)	70.2	70.4	113.5	113.6
BB _{Output} (GJ/yr)	41.4	43.6	16.6	19.0
Heat Dump (GJ/yr)	41.6	44.4	60.7	63.6
Demand _{SH} (GJ/yr)	58.6	58.1	57.8	57.5
Demand _{DHW} (GJ/yr)	12.8	12.7	12.8	12.8
η_{el} (%)	20.5	20.5	15.7	15.77004
η _{CHP} (%)	42.0	42.1	31.7	31.7
Cost _{el,flat} (CAD/yr)	229	231	36	36
Cost _{el,TOU} (CAD/yr)	259	261	43	43
Total Fuel (m ³ /yr)	4753	4825	6029	6112
Cost _{fuel} (CAD/yr)	2342	2377	2971	3011
Cost _{tot,flat} (CAD/yr)	2570	2608	3007	3047
Cost _{tot,TOU} (CAD/yr)	2600	2639	3014	3054
GHG _{el,avg} (tonnes/yr)	0.51	0.51	0.08	0.08
GHG _{el,high} (tonnes/yr)	2.18	2.20	0.34	0.34
GHG _{th} (tonnes/yr)	8.82	8.96	11.19	11.35
GHG _{tot,avg} (tonnes/yr)	9.33	9.47	11.27	11.43
GHG _{tot,high} (tonnes/yr)	11.00	11.16	11.54	11.69

 Table H.50: Test Case House 15, Ottawa – ICE Based Cogeneration Annual

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	9123	9188	9190	9199
Demand _{el,grid} (kWh/yr)	2301	2341	363	363
ICE _{Output,el} (kWh/yr)	6822	6848	8828	8836
ICE _{Output,th} (GJ/yr)	70.2	70.5	113.4	113.5
BB _{Output} (GJ/yr)	34.2	35.1	10.1	10.6
Heat Dump (GJ/yr)	43.8	45.6	63.9	64.8
Demand _{SH} (GJ/yr)	49.0	48.5	48.1	47.8
Demand _{DHW} (GJ/yr)	12.8	12.8	12.9	12.8
η_{el} (%)	20.5	20.5	15.8	15.8
η _{CHP} (%)	42.1	42.3	31.7	31.8
Cost _{el,flat} (CAD/yr)	230	234	36	36
Cost _{el,TOU} (CAD/yr)	260	265	43	43
Total Fuel (m ³ /yr)	4506	4542	5810	5827
Cost _{fuel} (CAD/yr)	2220	2238	2863	2871
Cost _{tot,flat} (CAD/yr)	2450	2472	2899	2907
Cost _{tot,TOU} (CAD/yr)	2481	2503	2906	2914
GHG _{el,avg} (tonnes/yr)	0.51	0.52	0.08	0.08
GHG _{el,high} (tonnes/yr)	2.20	2.23	0.35	0.35
GHG _{th} (tonnes/yr)	8.37	8.43	10.79	10.82
GHG _{tot,avg} (tonnes/yr)	8.88	8.95	10.87	10.90
GHG _{tot,high} (tonnes/yr)	10.56	10.67	11.13	11.16

 Table H.51: Test Case House 15, Toronto – ICE Based Cogeneration Annual

Simulation Results				
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	10114	10114	10138	10165
Demand _{el,grid} (kWh/yr)	3037	3038	685	685
ICE _{Output,el} (kWh/yr)	7077	7075	9453	9479
ICE _{Output,th} (GJ/yr)	72.0	72.0	116.4	116.5
BB _{Output} (GJ/yr)	24.4	31.5	10.5	11.9
Heat Dump (GJ/yr)	43.2	50.7	74.2	76.2
Demand _{SH} (GJ/yr)	41.7	41.2	40.9	40.5
Demand _{DHW} (GJ/yr)	12.9	12.9	13.0	13.0
η_{el} (%)	20.9	20.9	16.4	16.4
η _{CHP} (%)	44.6	44.6	32.6	32.7
Cost _{el,flat} (CAD/yr)	159	159	36	36
Cost _{el,TOU} (CAD/yr)	179	180	42	42
Total Fuel (m ³ /yr)	5939	6275	8354	8402
Cost _{fuel} (CAD/yr)	3861	4079	5430	5461
Cost _{tot,flat} (CAD/yr)	4019	4237	5466	5497
Cost _{tot,TOU} (CAD/yr)	4040	4258	5472	5503
GHG _{el,avg} (tonnes/yr)	0.02	0.02	0.01	0.01
GHG _{el,high} (tonnes/yr)	1.67	1.67	0.38	0.38
GHG _{th} (tonnes/yr)	9.51	10.05	13.33	13.46
GHG _{tot,avg} (tonnes/yr)	9.54	10.08	13.34	13.46
GHG _{tot,high} (tonnes/yr)	11.18	11.72	13.71	13.84

 Table H.52: Test Case House 16, Montreal – ICE Based Cogeneration Annual

Table 11.55, Test Case House To, Quebee Tell Dusea Cogeneration Annual	Table H.53: Test	Case House 16,	Quebec – ICE Based	Cogeneration Annual
--	------------------	----------------	--------------------	---------------------

[1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	9337	9379	9414	9434
Demand _{el,grid} (kWh/yr)	2430	2460	441	441
ICE _{Output,el} (kWh/yr)	6907	6919	8973	8993
ICE _{Output,th} (GJ/yr)	71.4	71.6	114.9	115.1
BB _{Output} (GJ/yr)	36.4	38.7	16.3	17.0
Heat Dump (GJ/yr)	37.8	41.0	62.6	64.0
Demand _{SH} (GJ/yr)	58.7	58.0	57.3	56.8
Demand _{DHW} (GJ/yr)	12.6	12.6	12.7	12.7
η_{el} (%)	20.6	20.7	15.9	15.9
η _{CHP} (%)	42.7	42.9	32.0	32.0
Cost _{el,flat} (CAD/yr)	127	128	23	23
Cost _{el,TOU} (CAD/yr)	144	146	27	27
Total Fuel (m ³ /yr)	6444	6562	8471	8467
Cost _{fuel} (CAD/yr)	4189	4265	5506	5503
Cost _{tot,flat} (CAD/yr)	4315	4393	5529	5526
Cost _{tot,TOU} (CAD/yr)	4333	4411	5534	5531
GHG _{el,avg} (tonnes/yr)	0.02	0.02	0.00	0.00
GHG _{el,high} (tonnes/yr)	1.33	1.35	0.24	0.24
GHG _{th} (tonnes/yr)	10.32	10.51	13.50	13.56
GHG _{tot,avg} (tonnes/yr)	10.34	10.53	13.50	13.57
GHG _{tot,high} (tonnes/yr)	11.66	11.86	13.74	13.81

Simulation Results

Simulation Acsults					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	7798	7799	7798	7792	
Demand _{el,grid} (kWh/yr)	1414	1414	127	127	
ICE _{Output,el} (kWh/yr)	6384	6385	7671	7665	
ICE _{Output,th} (GJ/yr)	68.0	68.2	108.5	108.5	
BB _{Output} (GJ/yr)	62.2	65.0	41.4	47.1	
Heat Dump (GJ/yr)	43.0	46.7	63.8	69.7	
Demand _{SH} (GJ/yr)	75.8	75.1	74.5	74.4	
Demand _{DHW} (GJ/yr)	12.8	12.8	12.9	12.8	
η _{el} (%)	19.7	19.7	14.5	14.5	
η _{CHP} (%)	39.0	39.0	30.4	30.4	
Cost _{el,flat} (CAD/yr)	74	74	7	7	
Cost _{el,TOU} (CAD/yr)	85	85	8	8	
Total Fuel (m ³ /yr)	7481	7613	9227	9378	
Cost _{fuel} (CAD/yr)	4863	4949	5997	6096	
Cost _{tot,flat} (CAD/yr)	4936	5023	6004	6102	
Cost _{tot,TOU} (CAD/yr)	4947	5033	6005	6104	
GHG _{el,avg} (tonnes/yr)	0.01	0.01	0.00	0.00	
GHG _{el,high} (tonnes/yr)	0.78	0.78	0.07	0.07	
GHG _{th} (tonnes/yr)	11.98	12.20	14.59	15.02	
GHG _{tot,avg} (tonnes/yr)	12.00	12.21	14.59	15.02	
GHG _{tot,high} (tonnes/yr)	12.76	12.97	14.66	15.09	

 Table H.54: Test Case House 17, Montreal – ICE Based Cogeneration Annual

		· · · · · · · · · · · · · · · · · · ·	T	· · · · · · · · · · · · · · · · · · ·
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	7829	7827	7829	7825
Demand _{el,grid} (kWh/yr)	1432	1430	133	134
ICE _{Output,el} (kWh/yr)	6397	6397	7696	7691
ICE _{Output,th} (GJ/yr)	68.2	68.4	108.8	108.8
BB _{Output} (GJ/yr)	63.5	66.5	45.3	50.0
Heat Dump (GJ/yr)	42.7	46.7	66.1	71.0
Demand _{SH} (GJ/yr)	77.6	76.8	76.5	76.3
Demand _{DHW} (GJ/yr)	12.8	12.7	12.8	12.8
η_{el} (%)	19.7	19.7	14.5	14.5
η _{CHP} (%)	39.0	39.0	30.4	30.4
Cost _{el,flat} (CAD/yr)	75	75	7	7
Cost _{el,TOU} (CAD/yr)	86	85	8	8
Total Fuel (m ³ /yr)	7547	7688	9436	9524
Cost _{fuel} (CAD/yr)	4905	4997	6133	6190
Cost _{tot,flat} (CAD/yr)	4980	5072	6140	6197
Cost _{tot,TOU} (CAD/yr)	4991	5082	6142	6199
GHG _{el,avg} (tonnes/yr)	0.01	0.01	0.00	0.00
GHG _{el,high} (tonnes/yr)	0.79	0.79	0.07	0.07
GHG _{th} (tonnes/yr)	12.09	12.32	14.91	15.26
GHG _{tot,avg} (tonnes/yr)	12.10	12.33	14.91	15.26
GHG _{tot,high} (tonnes/yr)	12.88	13.10	14.98	15.33

Simulation Results

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9313	9339	9373	9399	
Demand _{el,grid} (kWh/yr)	2416	2434	430	430	
ICE _{Output,el} (kWh/yr)	6897	6905	8944	8969	
ICE _{Output,th} (GJ/yr)	71.1	71.3	114.5	114.6	
BB _{Output} (GJ/yr)	35.4	39.1	13.1	15.0	
Heat Dump (GJ/yr)	38.7	43.1	61.0	63.6	
Demand _{SH} (GJ/yr)	56.4	55.9	55.1	54.5	
Demand _{DHW} (GJ/yr)	12.7	12.7	12.8	12.8	
η _{el} (%)	20.6	20.6	15.9	15.9	
η _{CHP} (%)	42.6	42.7	31.9	31.9	
Cost _{el,flat} (CAD/yr)	126	127	22	22	
Cost _{el,TOU} (CAD/yr)	143	144	27	27	
Total Fuel (m ³ /yr)	6397	6576	8300	8360	
Cost _{fuel} (CAD/yr)	4158	4274	5395	5434	
Cost _{tot,flat} (CAD/yr)	4284	4401	5417	5456	
Cost _{tot,TOU} (CAD/yr)	4301	4418	5421	5460	
GHG _{el,avg} (tonnes/yr)	0.02	0.02	0.00	0.00	
GHG _{el,high} (tonnes/yr)	1.33	1.34	0.24	0.24	
GHG _{th} (tonnes/yr)	10.25	10.53	13.24	13.39	
GHG _{tot,avg} (tonnes/yr)	10.27	10.55	13.24	13.39	
GHG _{tot,high} (tonnes/yr)	11.57	11.87	13.47	13.63	

 Table H.56: Test Case House 18, Montreal – ICE Based Cogeneration Annual

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10223	10218	10232	10242	
Demand _{el,grid} (kWh/yr)	3095	3091	696	703	
ICE _{Output,el} (kWh/yr)	7128	7127	9535	9539	
ICE _{Output,th} (GJ/yr)	72.7	72.8	118.0	117.9	
BB _{Output} (GJ/yr)	49.0	49.6	26.6	31.1	
Heat Dump (GJ/yr)	44.3	45.3	67.8	72.7	
Demand _{SH} (GJ/yr)	65.9	65.7	65.3	64.9	
Demand _{DHW} (GJ/yr)	12.7	12.7	12.7	12.7	
η_{el} (%)	21.0	21.0	16.5	16.5	
η _{CHP} (%)	44.9	45.0	32.9	32.9	
Cost _{el,flat} (CAD/yr)	162	161	36	37	
Cost _{el,TOU} (CAD/yr)	183	182	43	43	
Total Fuel (m ³ /yr)	7122	7152	9198	9337	
Cost _{fuel} (CAD/yr)	4629	4649	5979	6069	
Cost _{tot,flat} (CAD/yr)	4791	4810	6015	6106	
Cost _{tot,TOU} (CAD/yr)	4812	4831	6022	6112	
GHG _{el,avg} (tonnes/yr)	0.02	0.02	0.01	0.01	
GHG _{el,high} (tonnes/yr)	1.70	1.70	0.38	0.39	
GHG _{th} (tonnes/yr)	11.41	11.46	14.61	14.96	
GHG _{tot,avg} (tonnes/yr)	11.43	11.48	14.62	14.96	
GHG _{tot,high} (tonnes/yr)	13.11	13.15	14.99	15.34	

 Table H.57: Test Case House 18, Quebec – ICE Based Cogeneration Annual

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9828	9831	9565	9555	
Demand _{el,grid} (kWh/yr)	2599	2599	356	354	
ICE _{Output,el} (kWh/yr)	7229	7231	9208	9201	
ICE _{Output,th} (GJ/yr)	74.1	74.5	117.2	117.4	
BB _{Output} (GJ/yr)	128.9	130.1	104.5	103.8	
Heat Dump (GJ/yr)	49.8	52.5	69.8	70.1	
Demand _{SH} (GJ/yr)	142.2	141.0	140.7	139.9	
Demand _{DHW} (GJ/yr)	12.3	12.3	12.5	12.5	
η _{el} (%)	21.2	21.2	16.2	16.2	
η _{CHP} (%)	43.9	44.0	32.3	32.3	
Cost _{el,flat} (CAD/yr)	235	235	32	32	
Cost _{el,TOU} (CAD/yr)	263	263	37	37	
Total Fuel (m ³ /yr)	10947	11001	12997	12661	
Cost _{fuel} (CAD/yr)	10235	10286	12152	11838	
Cost _{tot,flat} (CAD/yr)	10470	10520	12184	11870	
Cost _{tot,TOU} (CAD/yr)	10498	10548	12190	11875	
GHG _{el,avg} (tonnes/yr)	1.13	1.13	0.15	0.15	
GHG _{el,high} (tonnes/yr)	2.10	2.10	0.29	0.29	
GHG _{th} (tonnes/yr)	17.54	17.62	20.34	20.28	
GHG _{tot,avg} (tonnes/yr)	18.66	18.75	20.49	20.44	
GHG _{tot,high} (tonnes/yr)	19.63	19.72	20.63	20.57	

 Table H.58: Test Case House 19, Fredericton – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10155	10162	9800	9782	
Demand _{el,grid} (kWh/yr)	2820	2815	381	378	
ICE _{Output,el} (kWh/yr)	7336	7346	9419	9404	
ICE _{Output,th} (GJ/yr)	75.0	75.5	119.2	119.4	
BB _{Output} (GJ/yr)	125.1	125.8	90.8	90.9	
Heat Dump (GJ/yr)	45.5	46.4	56.0	56.9	
Demand _{SH} (GJ/yr)	143.7	143.1	142.0	141.3	
Demand _{DHW} (GJ/yr)	12.2	12.1	12.4	12.3	
η _{el} (%)	21.3	21.3	16.5	16.4	
η _{CHP} (%)	44.8	44.9	32.7	32.7	
Cost _{el,flat} (CAD/yr)	255	255	34	34	
Cost _{el,TOU} (CAD/yr)	284	284	40	40	
Total Fuel (m ³ /yr)	10806	10842	12387	12124	
Cost _{fuel} (CAD/yr)	10104	10137	11582	11336	
Cost _{tot,flat} (CAD/yr)	10359	10392	11616	11370	
Cost _{tot,TOU} (CAD/yr)	10388	10421	11621	11375	
GHG _{el,avg} (tonnes/yr)	1.22	1.22	0.16	0.16	
GHG _{el,high} (tonnes/yr)	2.28	2.27	0.31	0.30	
GHG _{th} (tonnes/yr)	17.31	17.37	19.42	19.42	
GHG _{tot,avg} (tonnes/yr)	18.53	18.59	19.59	19.58	
GHG _{tot,high} (tonnes/yr)	19.59	19.64	19.73	19.73	

 Table H.59: Test Case House 19, Saint John – ICE Based Cogeneration Annual

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10727	10718	10737	10748	
Demand _{el,grid} (kWh/yr)	3435	3428	799	804	
ICE _{Output,el} (kWh/yr)	7292	7290	9938	9943	
ICE _{Output,th} (GJ/yr)	73.9	73.9	120.0	120.0	
BB _{Output} (GJ/yr)	51.0	51.3	27.2	31.1	
Heat Dump (GJ/yr)	44.1	44.6	66.9	70.9	
Demand _{SH} (GJ/yr)	69.6	69.3	69.0	68.8	
Demand _{DHW} (GJ/yr)	12.5	12.6	12.6	12.6	
η_{el} (%)	21.3	21.3	16.9	16.9	
η _{CHP} (%)	46.2	46.2	33.4	33.4	
Cost _{el,flat} (CAD/yr)	311	310	72	73	
Cost _{el,TOU} (CAD/yr)	348	347	83	84	
Total Fuel (m ³ /yr)	7278	7291	9385	9491	
Cost _{fuel} (CAD/yr)	6805	6817	8775	8874	
Cost _{tot,flat} (CAD/yr)	7116	7127	8847	8947	
Cost _{tot,TOU} (CAD/yr)	7153	7164	8858	8958	
GHG _{el,avg} (tonnes/yr)	1.49	1.48	0.35	0.35	
GHG _{el,high} (tonnes/yr)	2.77	2.77	0.64	0.65	
GHG _{th} (tonnes/yr)	11.66	11.68	14.91	15.20	
GHG _{tot,avg} (tonnes/yr)	13.15	13.16	15.25	15.55	
GHG _{tot,high} (tonnes/yr)	14.43	14.45	15.55	15.85	

 Table H.60: Test Case House 20, Fredericton – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	10739	10728	10760	10792
Demand _{el,grid} (kWh/yr)	3443	3434	810	813
ICE _{Output,el} (kWh/yr)	7296	7293	9950	9979
ICE _{Output,th} (GJ/yr)	74.4	74.4	120.4	120.5
BB _{Output} (GJ/yr)	44.3	45.4	20.0	21.0
Heat Dump (GJ/yr)	39.0	40.3	61.3	62.9
Demand _{SH} (GJ/yr)	68.6	68.5	67.9	67.3
Demand _{DHW} (GJ/yr)	12.4	12.4	12.5	12.5
η_{el} (%)	21.3	21.3	16.9	16.9
η _{CHP} (%)	46.3	46.3	33.4	33.5
Cost _{el,flat} (CAD/yr)	311	310	73	73
Cost _{el,TOU} (CAD/yr)	349	348	84	84
Total Fuel (m ³ /yr)	6962	7015	9025	9026
Cost _{fuel} (CAD/yr)	6509	6559	8439	8440
Cost _{tot,flat} (CAD/yr)	6820	6870	8512	8513
Cost _{tot,TOU} (CAD/yr)	6858	6907	8523	8524
GHG _{el,avg} (tonnes/yr)	1.49	1.49	0.35	0.35
GHG _{el,high} (tonnes/yr)	2.78	2.77	0.65	0.66
GHG _{th} (tonnes/yr)	11.15	11.24	14.37	14.46
GHG _{tot,avg} (tonnes/yr)	12.64	12.72	14.72	14.81
GHG _{tot,high} (tonnes/yr)	13.93	14.01	15.02	15.12

Simulation Results

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9570	9557	9480	9471	
Demand _{el,grid} (kWh/yr)	2654	2645	416	414	
ICE _{Output,el} (kWh/yr)	6916	6913	9064	9058	
ICE _{Output,th} (GJ/yr)	71.8	72.1	116.0	116.1	
BB _{Output} (GJ/yr)	91.7	93.6	67.1	68.4	
Heat Dump (GJ/yr)	47.4	50.0	67.6	69.6	
Demand _{SH} (GJ/yr)	107.2	106.8	106.5	105.9	
Demand _{DHW} (GJ/yr)	10.2	10.2	10.3	10.3	
η _{el} (%)	20.6	20.6	15.9	15.9	
η _{CHP} (%)	43.4	43.4	32.1	32.1	
Cost _{el,flat} (CAD/yr)	240	239	38	37	
Cost _{el,TOU} (CAD/yr)	270	269	43	43	
Total Fuel (m ³ /yr)	9070	9160	11047	10912	
Cost _{fuel} (CAD/yr)	8481	8565	10329	10203	
Cost _{tot,flat} (CAD/yr)	8720	8804	10367	10241	
Cost _{tot,TOU} (CAD/yr)	8751	8834	10372	10246	
GHG _{el,avg} (tonnes/yr)	1.15	1.15	0.18	0.18	
GHG _{el,high} (tonnes/yr)	2.14	2.13	0.34	0.33	
GHG _{th} (tonnes/yr)	14.53	14.67	17.39	17.48	
GHG _{tot,avg} (tonnes/yr)	15.68	15.82	17.57	17.66	
GHG _{tot,high} (tonnes/yr)	16.67	16.81	17.72	17.81	

 Table H.62: Test Case House 21, Fredericton – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	9696	9684	9589	9577
Demand _{el,grid} (kWh/yr)	2719	2709	431	428
ICE _{Output,el} (kWh/yr)	6977	6976	9158	9149
ICE _{Output,th} (GJ/yr)	72.6	73.0	117.2	117.4
BB _{Output} (GJ/yr)	99.1	99.7	69.6	70.0
Heat Dump (GJ/yr)	43.0	44.4	58.6	59.6
Demand _{SH} (GJ/yr)	119.9	119.6	119.3	118.9
Demand _{DHW} (GJ/yr)	10.1	10.0	10.2	10.1
η _{el} (%)	20.7	20.7	16.1	16.0
η _{CHP} (%)	43.7	43.8	32.3	32.3
Cost _{el,flat} (CAD/yr)	246	245	39	39
Cost _{el,TOU} (CAD/yr)	276	275	45	45
Total Fuel (m ³ /yr)	9442	9473	11209	11024
Cost _{fuel} (CAD/yr)	8828	8857	10481	10307
Cost _{tot,flat} (CAD/yr)	9074	9102	10520	10346
Cost _{tot,TOU} (CAD/yr)	9105	9133	10526	10352
GHG _{el,avg} (tonnes/yr)	1.18	1.17	0.19	0.19
GHG _{el,high} (tonnes/yr)	2.19	2.19	0.35	0.35
GHG _{th} (tonnes/yr)	15.13	15.18	17.64	17.66
GHG _{tot,avg} (tonnes/yr)	16.30	16.35	17.82	17.85
GHG _{tot,high} (tonnes/yr)	17.32	17.36	17.98	18.01

 Table H.63: Test Case House 21, Saint John – ICE Based Cogeneration Annual

 Simulation Results

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	11496	11552	11586	11601	
Demandel,grid (kWh/yr)	4045	4090	1111	1112	
ICE _{Output,el} (kWh/yr)	7451	7463	10475	10489	
ICE _{Output,th} (GJ/yr)	74.7	74.9	122.3	122.3	
BB _{Output} (GJ/yr)	31.1	32.2	9.5	10.4	
Heat Dump (GJ/yr)	40.0	41.6	66.5	67.7	
Demand _{SH} (GJ/yr)	54.5	54.2	53.9	53.6	
Demand _{DHW} (GJ/yr)	12.6	12.6	12.7	12.7	
η_{el} (%)	21.6	21.6	17.4	17.5	
η _{CHP} (%)	48.1	48.3	34.2	34.3	
Cost _{el,flat} (CAD/yr)	410	414	113	113	
Cost _{el,TOU} (CAD/yr)	273	276	69	69	
Total Fuel (m ³ /yr)	6394	6451	8697	8720	
Cost _{fuel} (CAD/yr)	6170	6225	8393	8415	
Cost _{tot,flat} (CAD/yr)	6580	6639	8505	8528	
Cost _{tot,TOU} (CAD/yr)	6443	6501	8461	8484	
GHG _{el,avg} (tonnes/yr)	3.07	3.10	0.84	0.84	
GHG _{el,high} (tonnes/yr)	3.70	3.75	1.02	1.02	
GHG _{th} (tonnes/yr)	10.24	10.33	13.89	13.97	
GHG _{tot,avg} (tonnes/yr)	13.31	13.44	14.73	14.81	
GHG _{tot,high} (tonnes/yr)	13.95	14.08	14.91	14.99	

 Table H.64: Test Case House 22, Halifax – ICE Based Cogeneration Annual

	1 1-337 2001	11-337 4503	21-332 2001	21-31/ 4501
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	11560	11611	11665	11687
Demand _{el,grid} (kWh/yr)	4074	4115	1129	1130
ICE _{Output,el} (kWh/yr)	7486	7496	10536	10557
ICE _{Output,th} (GJ/yr)	75.4	75.6	123.5	123.6
BB _{Output} (GJ/yr)	39.5	41.1	15.8	16.1
Heat Dump (GJ/yr)	34.8	37.4	60.5	61.2
Demand _{SH} (GJ/yr)	69.0	68.2	67.6	67.3
Demand _{DHW} (GJ/yr)	12.4	12.4	12.5	12.5
$\eta_{\rm el}$ (%)	21.6	21.6	17.5	17.5
η _{CHP} (%)	48.4	48.5	34.5	34.5
Cost _{el,flat} (CAD/yr)	413	417	114	114
Cost _{el,TOU} (CAD/yr)	275	278	70	70
Total Fuel (m ³ /yr)	6803	6884	9036	9013
Cost _{fuel} (CAD/yr)	6565	6644	8720	8697
Cost _{tot,flat} (CAD/yr)	6978	7060	8834	8812
Cost _{tot,TOU} (CAD/yr)	6840	6921	8790	8767
GHG _{el,avg} (tonnes/yr)	3.09	3.12	0.86	0.86
GHG _{el,high} (tonnes/yr)	3.73	3.77	1.03	1.04
GHG _{th} (tonnes/yr)	10.90	11.03	14.40	14.44
GHG _{tot,avg} (tonnes/yr)	13.99	14.15	15.26	15.30
GHG _{tot,high} (tonnes/yr)	14.63	14.80	15.44	15.47

 Table H.65: Test Case House 22, Sydney – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9303	9304	9300	9294	
Demand _{el,grid} (kWh/yr)	2317	2314	333	334	
ICE _{Output,el} (kWh/yr)	6985	6990	8967	8960	
ICE _{Output,th} (GJ/yr)	72.0	72.3	115.2	115.2	
BB _{Output} (GJ/yr)	88.9	91.8	66.9	69.4	
Heat Dump (GJ/yr)	42.8	46.8	65.0	67.6	
Demand _{SH} (GJ/yr)	106.9	106.1	105.8	105.6	
Demand _{DHW} (GJ/yr)	12.6	12.5	12.6	12.6	
η _{el} (%)	20.8	20.8	15.9	15.9	
η _{CHP} (%)	42.6	42.7	31.9	31.9	
Cost _{el,flat} (CAD/yr)	235	234	34	34	
Cost _{el,TOU} (CAD/yr)	156	156	20	20	
Total Fuel (m ³ /yr)	8962	9102	11018	10939	
Cost _{fuel} (CAD/yr)	8648	8783	10632	10556	
Cost _{tot,flat} (CAD/yr)	8883	9018	10666	10590	
Cost _{tot,TOU} (CAD/yr)	8804	8939	10652	10576	
GHG _{el,avg} (tonnes/yr)	1.76	1.76	0.25	0.25	
GHG _{el,high} (tonnes/yr)	2.12	2.12	0.30	0.31	
GHG _{th} (tonnes/yr)	14.36	14.58	17.34	17.52	
GHG _{tot,avg} (tonnes/yr)	16.12	16.34	17.59	17.78	
GHG _{tot,high} (tonnes/yr)	16.48	16.70	17.65	17.83	

 Table H.66: Test Case House 23, Halifax – ICE Based Cogeneration Annual

 Simulation Results

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9474	9475	9455	9443	
Demand _{el,grid} (kWh/yr)	2396	2396	349	347	
ICE _{Output,el} (kWh/yr)	7078	7078	9107	9096	
ICE _{Output,th} (GJ/yr)	72.9	73.1	116.6	116.6	
BB _{Output} (GJ/yr)	113.8	115.9	82.4	84.4	
Heat Dump (GJ/yr)	41.1	43.8	54.3	56.7	
Demand _{SH} (GJ/yr)	134.5	134.2	133.6	133.2	
Demand _{DHW} (GJ/yr)	12.4	12.3	12.4	12.4	
η_{el} (%)	20.9	20.9	16.1	16.1	
η _{CHP} (%)	43.1	43.1	32.2	32.2	
Cost _{el,flat} (CAD/yr)	243	243	35	35	
Cost _{el,TOU} (CAD/yr)	161	162	21	21	
Total Fuel (m ³ /yr)	10173	10273	11845	11703	
Cost _{fuel} (CAD/yr)	9817	9913	11431	11293	
Cost _{tot,flat} (CAD/yr)	10060	10156	11466	11328	
Cost _{tot,TOU} (CAD/yr)	9979	10075	11452	11314	
GHG _{el,avg} (tonnes/yr)	1.82	1.82	0.26	0.26	
GHG _{el,high} (tonnes/yr)	2.19	2.20	0.32	0.32	
GHG _{th} (tonnes/yr)	16.30	16.46	18.60	18.75	
GHG _{tot,avg} (tonnes/yr)	18.12	18.28	18.86	19.01	
GHG _{tot,high} (tonnes/yr)	18.49	18.65	18.92	19.06	

Simulation Results

Table H.68: Test Case House 24	, Halifax – ICE Based	Cogeneration Annual

	1 LW 2001	1kW, 450L	2kW, 300L	2kW, 450L
	1 kW, 300L			
Demand _{el} (kWh/yr)	9986	9984	9984	9985
Demand _{el,grid} (kWh/yr)	2842	2841	531	536
ICE _{Output,el} (kWh/yr)	7144	7143	9454	9449
ICE _{Output,th} (GJ/yr)	73.0	73.2	117.6	117.6
BB _{Output} (GJ/yr)	69.0	70.9	47.9	51.2
Heat Dump (GJ/yr)	41.0	43.2	65.1	68.8
Demand _{SH} (GJ/yr)	89.8	89.5	89.0	88.6
Demand _{DHW} (GJ/yr)	12.6	12.6	12.7	12.6
η_{el} (%)	21.0	21.0	16.4	16.4
η_{CHP} (%)	44.4	44.4	32.6	32.6
Cost _{el,flat} (CAD/yr)	288	288	54	54
Cost _{el,TOU} (CAD/yr)	191	191	32	32
Total Fuel (m ³ /yr)	8079	8164	10242	10259
Cost _{fuel} (CAD/yr)	7796	7878	9884	9900
Cost _{tot,flat} (CAD/yr)	8084	8166	9938	9954
Cost _{tot,TOU} (CAD/yr)	7987	8070	9916	9932
GHG _{el,avg} (tonnes/yr)	2.16	2.16	0.40	0.41
GHG _{el,high} (tonnes/yr)	2.60	2.60	0.49	0.49
GHG _{th} (tonnes/yr)	12.94	13.08	16.19	16.43
GHG _{tot,avg} (tonnes/yr)	15.10	15.23	16.59	16.84
GHG _{tot,high} (tonnes/yr)	15.55	15.68	16.67	16.92

Simulation Results

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	10234	10237	10227	10227
Demand _{el,grid} (kWh/yr)	2905	2903	543	548
ICE _{Output,el} (kWh/yr)	7329	7334	9684	9678
ICE _{Output,th} (GJ/yr)	74.4	74.7	119.1	119.1
BB _{Output} (GJ/yr)	84.2	85.6	56.9	59.3
Heat Dump (GJ/yr)	34.7	37.5	53.4	56.7
Demand _{SH} (GJ/yr)	112.9	111.7	111.4	110.6
Demand _{DHW} (GJ/yr)	12.4	12.4	12.5	12.5
η _{el} (%)	21.4	21.4	16.7	16.7
η _{CHP} (%)	45.1	45.1	33.0	33.0
Cost _{el,flat} (CAD/yr)	294	294	55	56
Cost _{el,TOU} (CAD/yr)	195	195	33	33
Total Fuel (m ³ /yr)	8863	8931	10793	10743
Cost _{fuel} (CAD/yr)	8553	8619	10415	10367
Cost _{tot,flat} (CAD/yr)	8847	8913	10470	10423
Cost _{tot,TOU} (CAD/yr)	8748	8814	10448	10400
GHG _{el,avg} (tonnes/yr)	2.20	2.20	0.41	0.42
GHG _{el,high} (tonnes/yr)	2.66	2.66	0.50	0.50
GHG _{th} (tonnes/yr)	14.20	14.31	17.03	17.21
GHG _{tot,avg} (tonnes/yr)	16.40	16.51	17.44	17.63
GHG _{tot,high} (tonnes/yr)	16.86	16.97	17.52	17.71

Simulation Results

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	8790	8845	8866	8881
Demand _{el,grid} (kWh/yr)	2028	2063	271	272
ICE _{Output,el} (kWh/yr)	6762	6782	8595	8610
ICE _{Output,th} (GJ/yr)	70.5	70.7	112.1	112.1
BB _{Output} (GJ/yr)	30.2	31.7	11.3	12.2
Heat Dump (GJ/yr)	39.6	41.7	62.9	64.1
Demand _{SH} (GJ/yr)	49.7	49.3	49.0	48.7
Demand _{DHW} (GJ/yr)	12.7	12.7	12.8	12.8
η_{el} (%)	20.4	20.4	15.5	15.6
η _{CHP} (%)	41.4	41.5	31.3	31.3
Cost _{el,flat} (CAD/yr)	217	220	29	29
Cost _{el,TOU} (CAD/yr)	243	247	34	34
Total Fuel (m ³ /yr)	6099	6177	8079	8097
Cost _{fuel} (CAD/yr)	3598	3644	4766	4778
Cost _{tot,flat} (CAD/yr)	3815	3865	4795	4807
Cost _{tot,TOU} (CAD/yr)	3841	3892	4800	4811
GHG _{el,avg} (tonnes/yr)	2.27	2.31	0.30	0.30
GHG _{el,high} (tonnes/yr)	2.46	2.50	0.33	0.33
GHG _{th} (tonnes/yr)	9.77	9.89	12.89	12.97
GHG _{tot,avg} (tonnes/yr)	12.04	12.21	13.19	13.28
GHG _{tot,high} (tonnes/yr)	12.23	12.39	13.22	13.30

Table H.70: Test Case House 25, Prince Edward Island – ICE Based Cogeneration

Annual Simulation Results

Annual Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	9231	9289	9314	9331	
Demand _{el,grid} (kWh/yr)	2318	2356	359	360	
ICE _{Output,el} (kWh/yr)	6913	6933	8955	8971	
ICE _{Output,th} (GJ/yr)	71.6	71.8	114.5	114.6	
BB _{Output} (GJ/yr)	35.8	36.3	14.5	15.4	
Heat Dump (GJ/yr)	37.2	38.4	59.7	61.0	
Demand _{SH} (GJ/yr)	59.0	58.5	57.9	57.6	
Demand _{DHW} (GJ/yr)	12.6	12.6	12.7	12.7	
η _{el} (%)	20.7	20.7	15.9	15.9	
η _{CHP} (%)	42.5	42.6	31.8	31.8	
Cost _{el,flat} (CAD/yr)	248	252	38	38	
Cost _{el,TOU} (CAD/yr)	278	282	45	45	
Total Fuel (m ³ /yr)	6421	6451	8378	8387	
Cost _{fuel} (CAD/yr)	3788	3806	4943	4948	
Cost _{tot,flat} (CAD/yr)	4036	4058	4982	4987	
Cost _{tot,TOU} (CAD/yr)	4066	4088	4988	4993	
GHG _{el,avg} (tonnes/yr)	2.60	2.64	0.40	0.40	
GHG _{el,high} (tonnes/yr)	2.81	2.85	0.44	0.44	
GHG _{th} (tonnes/yr)	10.29	10.33	13.35	13.43	
GHG _{tot,avg} (tonnes/yr)	12.88	12.97	13.76	13.84	
GHG _{tot,high} (tonnes/yr)	13.09	13.19	13.79	13.87	

 Table H.71: Test Case House 26, Prince Edward Island – ICE Based Cogeneration

Annual Simulation Results

Annual Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	8830	8821	8790	8774	
Demand _{el,grid} (kWh/yr)	1958	1951	214	212	
ICE _{Output,el} (kWh/yr)	6873	6870	8577	8562	
ICE _{Output,th} (GJ/yr)	71.3	71.5	113.2	113.3	
BB _{Output} (GJ/yr)	106.9	107.8	81.3	83.0	
Heat Dump (GJ/yr)	44.6	46.2	61.6	64.0	
Demand _{SH} (GJ/yr)	122.3	121.9	121.6	121.0	
Demand _{DHW} (GJ/yr)	12.6	12.5	12.6	12.6	
η _{el} (%)	20.6	20.6	15.6	15.5	
$\eta_{\mathrm{CHP}}\left(\% ight)$	41.4	41.5	31.4	31.4	
Cost _{el,flat} (CAD/yr)	209	208	23	23	
Cost _{el,TOU} (CAD/yr)	234	234	27	26	
Fotal Fuel (m ³ /yr)	9773	9816	11591	11433	
Cost _{fuel} (CAD/yr)	5766	5791	6839	6745	
Cost _{tot,flat} (CAD/yr)	5975	6000	6861	6768	
Cost _{tot,TOU} (CAD/yr)	6001	6025	6865	6772	
GHG _{el,avg} (tonnes/yr)	2.19	2.19	0.24	0.24	
GHG _{el,high} (tonnes/yr)	2.37	2.36	0.26	0.26	
GHG _{th} (tonnes/yr)	15.66	15.72	18.19	18.31	
GHG _{tot,avg} (tonnes/yr)	17.85	17.91	18.43	18.55	
GHG _{tot,high} (tonnes/yr)	18.03	18.09	18.45	18.57	

Table H.72: Test Case House 27, Prince Edward Island – ICE Based Cogeneration

Annual Simulation Results

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L
Demand _{el} (kWh/yr)	11224	11214	11259	11295
Demand _{el,grid} (kWh/yr)	3797	3791	977	982
ICE _{Output,el} (kWh/yr)	7427	7423	10282	10313
ICE _{Output,th} (GJ/yr)	75.4	75.4	122.9	123.1
BB _{Output} (GJ/yr)	66.3	69.8	34.6	37.8
Heat Dump (GJ/yr)	36.9	40.6	53.6	57.3
Demand _{SH} (GJ/yr)	93.9	93.6	92.9	92.6
Demand _{DHW} (GJ/yr)	12.3	12.3	12.4	12.4
η _{el} (%)	21.5	21.5	17.3	17.3
η _{CHP} (%)	47.6	47.6	34.1	34.1
Cost _{el,flat} (CAD/yr)	339	338	87	88
Cost _{el,TOU} (CAD/yr)	378	377	100	100
Total Fuel (m ³ /yr)	8052	8218	9888	9952
Cost _{fuel} (CAD/yr)	6289	6418	7722	7772
Cost _{tot,flat} (CAD/yr)	6627	6756	7809	7860
Cost _{tot,TOU} (CAD/yr)	6666	6795	7822	7872
GHG _{el,avg} (tonnes/yr)	0.08	0.08	0.02	0.02
GHG _{el,high} (tonnes/yr)	2.96	2.95	0.76	0.77
GHG _{th} (tonnes/yr)	12.90	13.16	15.68	15.94
GHG _{tot,avg} (tonnes/yr)	12.98	13.24	15.70	15.96
GHG _{tot,high} (tonnes/yr)	15.86	16.12	16.44	16.71

 Table H.73: Test Case House 28, Goose Bay – ICE Based Cogeneration Annual

 Simulation Results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission www.manaraa.com

Simulation results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	11165	11260	11285	11301	
Demand _{el,grid} (kWh/yr)	3772	3845	980	982	
ICE _{Output,el} (kWh/yr)	7393	7416	10305	10320	
ICE _{Output,th} (GJ/yr)	75.3	75.6	122.7	122.6	
BB _{Output} (GJ/yr)	33.1	33.0	7.2	6.3	
Heat Dump (GJ/yr)	31.4	32.4	54.2	54.0	
Demand _{SH} (GJ/yr)	66.0	65.2	64.5	63.7	
Demand _{DHW} (GJ/yr)	12.3	12.3	12.5	12.5	
η_{el} (%)	21.5	21.5	17.3	17.3	
η _{CHP} (%)	47.5	47.8	34.1	34.1	
Cost _{el,flat} (CAD/yr)	336	343	87	88	
Cost _{el,TOU} (CAD/yr)	375	383	100	100	
Total Fuel (m ³ /yr)	6466	6468	8516	8463	
Cost _{fuel} (CAD/yr)	5050	5051	6651	6610	
Cost _{tot,flat} (CAD/yr)	5386	5394	6738	6697	
Cost _{tot,TOU} (CAD/yr)	5425	5434	6751	6710	
GHG _{el,avg} (tonnes/yr)	0.08	0.08	0.02	0.02	
GHG _{el,high} (tonnes/yr)	2.94	3.00	0.76	0.76	
GHG _{th} (tonnes/yr)	10.36	10.36	13.61	13.56	
GHG _{tot,avg} (tonnes/yr)	10.44	10.44	13.63	13.58	
GHG _{tot,high} (tonnes/yr)	13.30	13.36	14.37	14.32	

Table H.74: Test Case House 28, St. John's – ICE Based Cogeneration Annual

	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10264	10252	10275	10293	
Demand _{el,grid} (kWh/yr)	3040	3031	616	628	
ICE _{Output,el} (kWh/yr)	7225	7221	9659	9665	
ICE _{Output,th} (GJ/yr)	74.4	74.4	120.2	120.1	
BB _{Output} (GJ/yr)	78.3	79.3	42.9	47.8	
Heat Dump (GJ/yr)	33.8	35.1	45.3	50.5	
Demand _{SH} (GJ/yr)	108.0	107.6	106.8	106.5	
Demand _{DHW} (GJ/yr)	12.2	12.3	12.3	12.3	
η_{el} (%)	21.2	21.2	16.6	16.6	
η _{CHP} (%)	45.2	45.2	33.1	33.1	
Cost _{el,flat} (CAD/yr)	271	270	55	56	
Cost _{el,TOU} (CAD/yr)	303	302	63	64	
Total Fuel (m ³ /yr)	8547	8594	10070	10182	
Cost _{fuel} (CAD/yr)	6675	6712	7865	7952	
Cost _{tot,flat} (CAD/yr)	6946	6982	7919	8008	
Cost _{tot,TOU} (CAD/yr)	6978	7014	7928	8017	
GHG _{el,avg} (tonnes/yr)	0.06	0.06	0.01	0.01	
GHG _{el,high} (tonnes/yr)	2.37	2.36	0.48	0.49	
GHG _{th} (tonnes/yr)	13.69	13.77	15.93	16.31	
GHG _{tot,avg} (tonnes/yr)	13.76	13.83	15.95	16.32	
GHG _{tot,high} (tonnes/yr)	16.06	16.13	16.41	16.80	

 Table H.75: Test Case House 29, Goose Bay – ICE Based Cogeneration Annual

Simulation Acsuits					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10176	10216	10268	10296	
Demand _{el,grid} (kWh/yr)	2991	3024	622	622	
ICE _{Output,el} (kWh/yr)	7185	7192	9646	9674	
ICE _{Output,th} (GJ/yr)	74.5	74.6	120.3	120.3	
BB _{Output} (GJ/yr)	39.6	42.3	12.0	11.9	
Heat Dump (GJ/yr)	26.7	29.8	45.4	45.9	
Demand _{SH} (GJ/yr)	76.5	76.2	75.9	75.3	
Demand _{DHW} (GJ/yr)	12.2	12.2	12.3	12.3	
η_{el} (%)	21.1	21.1	16.6	16.7	
η _{CHP} (%)	45.1	45.2	33.1	33.1	
Cost _{el,flat} (CAD/yr)	267	270	55	55	
Cost _{el,TOU} (CAD/yr)	298	302	64	64	
Total Fuel (m ³ /yr)	6698	6831	8513	8486	
Cost _{fuel} (CAD/yr)	5231	5335	6649	6627	
Cost _{tot,flat} (CAD/yr)	5498	5605	6704	6683	
Cost _{tot,TOU} (CAD/yr)	5529	5636	6713	6691	
GHG _{el,avg} (tonnes/yr)	0.06	0.06	0.01	0.01	
GHG _{el,high} (tonnes/yr)	2.33	2.36	0.48	0.48	
GHG _{th} (tonnes/yr)	10.73	10.94	13.58	13.59	
GHG _{tot,avg} (tonnes/yr)	10.79	11.01	13.60	13.61	
GHG _{tot,high} (tonnes/yr)	13.06	13.30	14.07	14.08	

 Table H.76: Test Case House 29, St. John's – ICE Based Cogeneration Annual

Simulation Results					
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L	
Demand _{el} (kWh/yr)	10907	10899	10967	11002	
Demand _{el,grid} (kWh/yr)	3660	3656	899	900	
ICE _{Output,el} (kWh/yr)	7247	7243	10068	10102	
ICE _{Output,th} (GJ/yr)	74.7	74.6	121.6	121.9	
BB _{Output} (GJ/yr)	53.5	58.0	27.7	27.5	
Heat Dump (GJ/yr)	31.3	36.1	53.5	54.2	
Demand _{SH} (GJ/yr)	83.6	83.2	82.5	81.7	
Demand _{DHW} (GJ/yr)	14.6	14.6	14.7	14.7	
η _{el} (%)	21.2	21.2	17.0	17.0	
η _{CHP} (%)	46.9	46.9	33.7	33.7	
Cost _{el,flat} (CAD/yr)	326	326	80	80	
Cost _{el,TOU} (CAD/yr)	364	363	91	91	
Total Fuel (m ³ /yr)	7382	7592	9457	9378	
Cost _{fuel} (CAD/yr)	5765	5929	7386	7324	
Cost _{tot,flat} (CAD/yr)	6092	6255	7466	7404	
Cost _{tot,TOU} (CAD/yr)	6129	6293	7477	7415	
GHG _{el,avg} (tonnes/yr)	0.08	0.08	0.02	0.02	
GHG _{el,high} (tonnes/yr)	2.85	2.85	0.70	0.70	
GHG _{th} (tonnes/yr)	11.83	12.16	15.02	15.02	
GHG _{tot,avg} (tonnes/yr)	11.90	12.24	15.04	15.04	
GHG _{tot,high} (tonnes/yr)	14.68	15.01	15.72	15.72	

Table H.77: Test Case House 30, Goose Bay – ICE Based Cogeneration Annual

Simulation Results

Simulation Results						
	1 kW, 300L	1kW, 450L	2kW, 300L	2kW, 450L		
Demand _{el} (kWh/yr)	10894	10985	10999	11006		
Demandel,grid (kWh/yr)	3665	3728	894	895		
ICE _{Output,el} (kWh/yr)	7229	7257	10106	10111		
ICE _{Output,th} (GJ/yr)	74.6	74.9	121.4	121.3		
BB _{Output} (GJ/yr)	28.0	28.3	4.4	3.8		
Heat Dump (GJ/yr)	28.4	29.5	52.4	52.1		
Demand _{SH} (GJ/yr)	61.0	60.4	59.8	59.4		
Demand _{DHW} (GJ/yr)	14.6	14.6	14.9	14.9		
η_{el} (%)	21.2	21.2	17.0	17.0		
η _{CHP} (%)	47.0	47.2	33.7	33.7		
Cost _{el,flat} (CAD/yr)	327	333	80	80		
Cost _{el,TOU} (CAD/yr)	364	370	90	90		
Total Fuel (m ³ /yr)	6167	6191	8296	8261		
Cost _{fuel} (CAD/yr)	4817	4835	6479	6452		
Cost _{tot,flat} (CAD/yr)	5144	5168	6559	6532		
Cost _{tot,TOU} (CAD/yr)	5181	5206	6570	6542		
GHG _{el,avg} (tonnes/yr)	0.08	0.08	0.02	0.02		
GHG _{el,high} (tonnes/yr)	2.86	2.90	0.70	0.70		
GHG _{th} (tonnes/yr)	9.88	9.92	13.27	13.23		
GHG _{tot,avg} (tonnes/yr)	9.96	10.00	13.29	13.25		
GHG _{tot,high} (tonnes/yr)	12.73	12.82	13.97	13.93		

 Table H.78: Test Case House 30, St. John's – ICE Based Cogeneration Annual

	Test Case House 1	Test Case House 2	Test Case House 3
Demand _{el} (kWh/yr)	19270	19109	16985
Demand _{el,grid} (kWh/yr)	2461	2933	1501
ICE _{Output,el} (kWh/yr)	16809	16177	15485
ICE _{Output,th} (GJ/yr)	176.2	166	169
BB _{Output} (GJ/yr)	8.9	0.0	0.0
Heat Dump (GJ/yr)	68.0	110.1	82.9
Demand _{SH} (GJ/yr)	107.8	46.0	76.6
Demand _{DHW} (GJ/yr)	10.5	11.4	10.8
η_{el} (%)	18.9	18.4	18.1
η _{CHP} (%)	35.4	35.1	33.7
Cost _{el,flat} (CAD/yr)	156	186	95
Cost _{el,TOU} (CAD/yr)	179	208	8560
Total Fuel (m ³ /yr)	9202	8740	110
Cost _{fuel} (CAD/yr)	3751	3563	3490
Cost _{tot,flat} (CAD/yr)	3907	3749	3585
Cost _{tot,TOU} (CAD/yr)	3931	3771	3600
GHG _{el,avg} (tonnes/yr)	0.06	0.07	0.04
GHG _{el,high} (tonnes/yr)	0.92	1.10	0.56
GHG _{th} (tonnes/yr)	17.08	16.22	15.89
GHG _{tot,avg} (tonnes/yr)	17.14	16.30	15.93
GHG _{tot,high} (tonnes/yr)	18.01	17.32	16.45

 Table H.79: Annual Simulation Results – Prince George, 3.0 kW, 1000 kg Thermal

Storage

H.2 Discussion

There is variability in the space heating demand results due to:

- The difference in casual gains due to the equipment usage
- The difference in control strategy used between the base and ICE based cogeneration cases. As mentioned in Section 7.9.1, the space heating demand in the base case was met by idealized HVAC using idealized control, which does not actually simulate system response and thus the temperature in the zone is held, without variability, at the set point temperature. In contrast, the control

implemented in the ICE based cogeneration case is through the control imposed on the space-heating fan. On/off control was used with a 1°C temperature band around the set point temperature defined. Since the system response is actually simulated, the temperature falls between the 1°C temperature band, as opposed to the exact temperature set point. Due to this difference, there is variability (less than 2.5%) in the space heating results.

There is variability in the domestic hot water demand due to:

- The differences in average tank temperature, thus the energy balance on the tank.
- The demand in litres between the base case, and the ICE based cogeneration cases remains the same, however, the demand in watts changes.

The ICE based cogeneration annual simulation results show the benefit of using a larger thermal storage tank capacity during the non-space heating months is outweighed by the cost of using a larger tank capacity in the space heating months. During times of high space heating demands, the thermal output from the ICE based cogeneration system is not enough to keep the tank temperature at the required 55°C, thus the backup burner is activated. Since the thermal mass of the 450 kg tank requires more energy to remain at the set point temperature compared to the 300 kg tank, the thermal output of the backup burner is greater when using a 450 kg tank during the space heating months. This results in higher fuel costs and GHG emissions. In addition, the ICE capacities simulated are relatively small (1.0 kW and 2.0 kW) as they were chosen to follow the electrical demand of the house, thus the thermal output is not large enough to warrant a larger thermal capacity. The severity and duration of the space-heating season affect the required output by the backup burner. Comparing the results for test case house 11 simulated in Le Pas and test case house 24 simulated in Sydney highlight this dependency. Figure H.1 plots the heating degree-day (HDD) for Le Pas and Sydney.

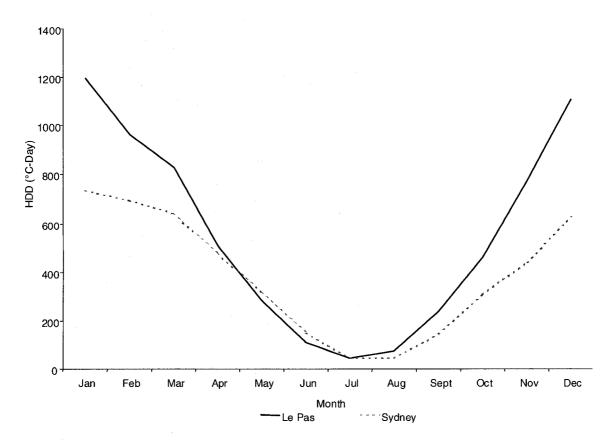


Figure H.1: Le Pas and Sydney HDD (Environment Canada, 2004)

As can be seen in Figure H.1, the heating season in Le Pas is more severe and longer in duration. Although the space heating demand of these two test case houses is comparable, the requirement of the backup burner in the test case house in Le Pas is higher than the backup burner output of the test case house in Sydney. Not only does the magnitude of the space heating requirement affect the backup burner requirement, so too does severity and duration of the space heating season.

In cases when the thermal output of the ICE based cogeneration system was sufficient to meet the thermal demand of the house, as in test case house 2 simulated in Vancouver, the benefit of the larger thermal storage tank is apparent as the requirement from the backup burner is decreased.